Skip to main content
Log in

Some More Updates on an Annihilation Number Conjecture: Pros and Cons

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

If \(\alpha (G)+\mu (G)=\left| V\right|\), then \(G=\left( V,E\right)\) is a König–Egerváry graph, where \(\alpha (G)\) denotes the cardinality of a maximum independent set, while \(\mu (G)\) is the size of a maximum matching in G. If \(d_{1}\le d_{2}\le \cdots \le d_{n}\) is the degree sequence of G, then the annihilation number \(a\left( G\right)\) of G is the largest integer k such that \(\sum \limits _{i=1} ^{k}d_{i}\le \left| E\right|\) (Pepper, Binding independence, Ph.D. Dissertation, University of Houston, 2004; Pepper, On the annihilation number of a graph, in: Recent Advances in Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics, pp 217–220, 2009). A set \(A\subseteq V\) satisfying \(\sum \limits _{a\in A}deg (a)\le \left| E\right|\) is an annihilation set; if, in addition, \(deg \left( v\right) +\sum \limits _{a\in A}deg (a)>\left| E\right|\), for every vertex \(v\in V(G)-A\), then A is a maximal annihilation set in G. In Larson and Pepper (Graphs with equal independence and annihilation numbers. Electron J Comb 18:180, 2011) it was conjectured that the following assertions are equivalent: (i) \(\alpha \left( G\right) =a\left( G\right)\); (ii) G is a König–Egerváry graph and every maximum independent set is a maximal annihilating set. Recently, it turned out that the implication “(i) \(\Longrightarrow\) (ii)” was not true. A series of corresponding counterexamples can be found in Hiller (Counterexamples to the characterisation of graphs with equal independence and annihilation number. arXiv:2202.07529v1 [math.CO], 2022). In Levit and Mandrescu (On an annihilation number conjecture. Ars Math. Contemp. 18, 359–369, 2020), we presented an infinite family of non-bipartite König–Egerváry graphs that invalidate the “ (ii) \(\Longrightarrow\) (i)” part of this conjecture. In this paper, we provide two more infinite families of counterexamples, one consisting of trees and the other one comprising non-tree bipartite graphs. We also show that the above conjecture is true for trees with \(\alpha \left( G\right) =4\), disconnected non-bipartite König–Egerváry graphs with \(\alpha \left( G\right) =4\), and disconnected bipartite graphs with \(\alpha \left( G\right) =4\) excluding the three following counterexamples: \(C_{4}\cup 2K_{2},Domino\cup K_{2}\) and \(K_{3,3}-e\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Amjadi, J.: An upper bound on the double domination number of trees. Kragujevac J. Math. 39, 133–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aram, H., Khoeilar, R., Sheikholeslami, S.M., Volkmann, L.: Relating the annihilation number and the Roman domination number. Acta Math. Univ. Comenianae 87, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Beckenbach, I., Borndörfer, R.: Hall’s and König’s theorem in graphs and hypergraphs. Discrete Math. 341, 2753–2761 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourjolly, J.M., Pulleyblank, W.R.: König–Egerváry graphs, 2-bicritical graphs and fractional matchings. Discrete Appl. Math. 24, 63–82 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bujtás, C.S., Jakovac, M.: Relating the total domination number and the annihilation number of cactus graphs and block graphs. Ars Math. Contemp. 16, 183–202 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehgardi, N., Norouzian, S., Sheikholeslami, S.M.: Bounding the domination number of a tree in terms of its annihilation number. Trans. Combin. 2, 9–16 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Dehgardi, N., Khodkar, A., Sheikholeslami, S.M.: Bounding the rainbow domination number of a tree in terms of its annihilation number. Trans. Combin. 2, 21–32 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Dehgardi, N., Khodkar, A., Sheikholeslami, S.M.: Bounding the paired-domination number of a tree in terms of its annihilation number. Filomat 28, 523–529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. De La Vina, E.: Written on the Wall II (Conjectures of graffiti.pc). http://cms.dt.uh.edu/faculty/delavinae/research/wowII/

  10. Deming, R.W.: Independence numbers of graphs—an extension of the König–Egerváry theorem. Discrete Math. 27, 23–33 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Desormeaux, W.J., Haynes, T.W., Henning, M.A.: Relating the annihilation number and the total domination number of a tree. Discrete Appl. Math. 161, 349–354 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Egerváry, E.: On combinatorial properties of matrices. Matematikai Lapok 38, 16–28 (1931)

    Google Scholar 

  13. Gavril, F.: Testing for equality between maximum matching and minimum node covering. Inform. Process. Lett. 6, 199–202 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gentner, M., Henning, M.A., Rautenbach, D.: Smallest domination number and largest independence number of graphs and forests with given degree sequence. J. Graph Theory 88, 131–145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hakimi, S.L.: On the realizability of a set of integers as degrees of the vertices of a graph. SIAM J. Appl. Math. 10, 496–506 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  16. Havel, V.: A remark on the existence of finite graphs (Czech.), Ĉasopis Pêst. Mat. 80, 477–480 (1955)

  17. Hiller, M.: Counterexamples to the characterisation of graphs with equal independence and annihilation number (2022). arXiv:2202.07529v1 [math.CO]

  18. Hopkins, G., Staton, W.: Graphs with unique maximum independent sets. Discrete Math. 57, 245–251 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jakovac, M.: Relating the annihilation number and the 2-domination number of block graphs. Discrete Appl. Math. 260, 178–187 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. König, D.: Graphen und matrizen. Matematikai Lapok 38, 116–119 (1931)

    MATH  Google Scholar 

  21. Korach, E.: On dual integrality, min-max equalities and algorithms in combinatorial programming, University of Waterloo, Department of Combinatorics and Optimization, Ph.D. Thesis (1982)

  22. Korach, E., Nguyen, T., Peis, B.: Subgraph characterization of red/blue-split graphs and König–Egerváry graphs. In: Proceedings of the Seventeenth Annual ACM–SIAM Symposium on Discrete Algorithms, ACM Press, 842–850 (2006)

  23. Larson, C.E.: The critical independence number and an independence decomposition. Eur. J. Combin. 32, 294–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Larson, C.E., Pepper, R.: Graphs with equal independence and annihilation numbers. Electron. J. Comb. 18, 180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Levit, V.E., Mandrescu, E.: Critical independent sets and König–Egerváry graphs. Graphs Combin. 28, 243–250 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levit, V.E., Mandrescu, E.: On maximum matchings in König–Egerváry graphs. Discrete Appl. Math. 161, 1635–1638 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Levit, V.E., Mandrescu, E.: On König–Egerváry collections of maximum critical independent sets. Art. Discrete Appl. Math. 2, #P1.02 (2019)

    Article  MATH  Google Scholar 

  28. Levit, V.E., Mandrescu, E.: On an annihilation number conjecture. Ars Math. Contemp. 18, 359–369 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levit, V.E., Mandrescu, E.: Critical sets, crowns and local maximum independent sets. J. Global Optim. 83, 481–495 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lovász, L.: Ear decomposition of matching covered graphs. Combinatorica 3, 105–117 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lovász, L., Plummer, M. D.: Matching Theory. Ann. Discrete Math. 29 (1986) North-Holland

  32. Ning, W., Lu, M., Wang, K.: Bounding the locating-total domination number of a tree in terms of its annihilation number. Discuss. Math. Graph Theory 39, 31–40 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pepper, R.: Binding Independence, Ph.D. Dissertation, University of Houston (2004)

  34. Pepper, R.: On the Annihilation Number of a Graph. In: Recent Advances in Electrical Engineering: Proceedings of the 15th American Conference on Applied Mathematics, 217–220 (2009)

  35. Short, T.: On some conjectures concerning critical independent sets of a graph. Electron. J. Comb. 23, #P2.43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sterboul, F.: A characterization of the graphs in which the transversal number equals the matching number. J. Comb. Theory B 27, 228–229 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yue, J., Zhu, Y., Wei, M.: The annihilation number and the total domination number of a tree-like graph. Appl. Math. Computat. 380, 125240 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yue, J., Zhang, S., Zhu, Y., Klavžar, S., Shi, Y.: The annihilation number does not bound the 2-domination number from the above. Discrete Math. 343, 111707 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, C.Q.: Finding critical independent sets and critical vertex subsets are polynomial problems. SIAM J. Discrete Math. 3, 431–438 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewer for helpful suggestions that led to a better exposition of the manuscript.

Funding

A funding declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of the article including the study conception and design. They also read and approved the final manuscript.

Corresponding author

Correspondence to Vadim E. Levit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levit, V.E., Mandrescu, E. Some More Updates on an Annihilation Number Conjecture: Pros and Cons. Graphs and Combinatorics 38, 141 (2022). https://doi.org/10.1007/s00373-022-02534-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02534-7

Keywords

Mathematics Subject Classification

Navigation