Skip to main content
Log in

On Extremal Graphs for Zero Forcing Number

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A subset S of vertex set V(G) of a graph G is a zero forcing set of G if iteratively adding vertices to S from \(V(G){\setminus }S\) that are the unique neighbor in \(V(G){\setminus } S\) of some vertex in S, results in the entire V(G) of G. Additionally, if the subgraph induced by S is connected, then S is a connected forcing set of G. The zero (resp., connected) forcing number, denoted by F(G) (resp., \(F_c(G)\)), of G is the minimum cardinality of a zero (resp., connected) forcing set of G. Davila and Kenter [Theory Appl. Graphs, 2(2) (2015) Article 1] proved that \(F(G)\le n-g+2\) for graphs G of finite girth g and order \(n (\ge g)\). In this paper, first, we restrict G to be connected and improve the upper bound according to the value of g: \(F(G)\le n-g+2\) when \(g=3, 4\) or n; \(F(G)\le n-g+1\) when \(g=5, 6\) or \(n-1\) \((n \ge 6)\) and \(F(G)\le n-g\) when \(7\le g\le n-2\). Further, the extremal graphs are characterized, respectively. Davila et al. [Graphs Combin. 34 (2018) 1159-1174] proved a similar upper bound on \(F_c(G)\) for 2-connected graphs G with n vertices and finite girth g: \(F_c(G)\le n-g+2\). Secondly, we prove that \(F_c(G)=n-g+2\) if and only if G is \(C_{n}\), or \(K_{n}\), or \(K_{a,b}\) for integers \(a, b \ge 2\), \(a+b=n\). Finally, we also characterize all connected triangle-free or subcubic graphs G of order n with \(F(G)=n-3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Aazami, A.: Hardness results and approximation algorithms for some problems on graphs (Ph.D. thesis). University of Waterloo. (2008)

  2. AIM Minimum Rank-Special Graphs Work Group (Barioli, F., Barrett, W., Butler, S., Cioab\(\breve{a}\), S.M., Cvetkovi\(\acute{c}\), D., Fallat, S.M., Godsil, C., Haemers, W., Hogben, L., Mikkelson, R., Narayan, S., Pryporova, O., Sciriha, I., So, W., Stevanovi\(\acute{c}\), D., van der Holst, H., Vander Meulen, K., Wangsness, A.): Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428, 1628–1648 (2008)

  3. Alishahi, M., Rezaei-Sani, E., Sharifi, E.: Maximum nullity and zero forcing number on graphs with maximum degree at most three. Discrete Appl. Math. 284, 179–194 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amos, D., Caro, Y., Davila, R., Pepper, R.: Upper bounds on the \(k\)-forcing number of a graph. Discrete Appl. Math. 181, 1–10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barioli, F., Fallat, S., Hogben, L.: Computation of minimal rank and path cover number for graphs. Linear Algebra Appl. 392, 289–303 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, A., Friedland, S., Hogben, L., Rothblum, U.G., Shader, B.: An upper bound for the minimum rank of a graph. Linear Algebra Appl. 429, 1629–1638 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrett, W., van der Holst, H., Loewy, R.: Graphs whose minimal rank is two. Electron. J. Linear Algebra. 11, 258–280 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brimkov, B., Hicks, I.V.: Complexity and computation of connected zero forcing. Discrete Appl. Math. 229, 31–45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burgarth, D., Giovannetti, V.: Full control by locally induced relaxation. Phys. Rev. Lett. 99, 100–501 (2007)

    Article  Google Scholar 

  10. Burgarth, D., Giovannetti, V., Hogben, L., Severini, S., Young, M.: Logic circuits from zero forcing. Nat. Comput. 14, 485–490 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chekuri, C., Korula, N.: A graph reduction step preserving element-connectivity and applications, Automata, Languages and Programming. pp. 254–265. Springer, New York (2009)

  12. Cheng, B., Liu, B.: On the nullity of graphs. Electron. J. Linear Algebra. 16, 60–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Davila, R., Henning, M.A.: On the total forcing number of a graph. Discrete Appl. Math. 257, 115–127 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Davila, R., Henning, M.A.: The forcing number of graphs with given girth. Quaest. Math. 41, 1–16 (2017)

    MathSciNet  Google Scholar 

  15. Davila, R., Henning, M.A., Magnant, C., Pepper, R.: Bounds on the connected forcing number of a graph. Graphs Combin. 34, 1159–1174 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davila, R., Kenter, F.: Bounds for the zero forcing number of graphs with large girth. Theory Appl. Graphs. 2(2), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Fallat, S., Hogben, L.: The minimum rank of symmetric matrices described by a graph: a survey. Linear Algebra Appl. 426, 558–582 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gentner, M., Penso, L.D., Rautenbach, D., Souza, U.S.: Extremal values and bounds for the zero forcing number. Discrete Appl. Math. 213, 196–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gentner, M., Rautenbach, D.: Some bounds on the zero forcing number of a graph. Discrete Appl. Math. 236, 203–213 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hogben, L.: Orthogonal representations, minimum rank, and graph complements. Linear Algebra Appl. 428, 2560–2568 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnson, C.R., Loewy, R., Smith, P.A.: The graphs for which the maximum multiplicity of an eigenvalue is two. Linear Multilinear A. 57, 713–736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karst, N., Shen, X., Troxell, D.S., Vu, M.: Blocking zero forcing processes in Cartesian products of graphs. Discrete Appl. Math. 285, 380–396 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kenter, F.: Approximating the minimum rank of a graph via alternating projection. Oper. Res. Lett. 44(2), 255–259 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, S., Sun, W.: On the zero forcing number of a graph involving some classical parameters. J. Comb. Optim. 39, 365–384 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, L., Wu, B., Tang, Z.: Proof of a conjecture on the zero forcing number of a graphs. Discrete Appl. Math. 213, 223–237 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mitchell, L.H., Narayan, S., Zimmer, A.M.: Lower bounds in minimum rank problems. Linear Algebra Appl. 432, 430–440 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Monshizadeh, N., Zhang, S., Camlibel, M.K.: Zero forcing sets and controllability of dynamical systems defined on graphs. IEEE T. Automat. Contr. 59(9), 2562–2567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. part iii: quantifier elimination. J. Symbolic Comput. 13(3), 329–352 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Row, D.D.: A technique for computing the forcing number of a graph with a cut-vertex. Linear Algebra Appl. 436, 4423–4432 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thomassen, C., Toft, B.: Non-seperating induced cycles in graphs. J. Combin. Theory B. 31, 199–224 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhou, Q., Wong, D., Tamb, B.: On connected graphs of order \(n\) with girth \(g\) and nullity \(n-g\). Linear Algebra Appl. 630, 56–68 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the referees for their valuable remarks and suggestions which improved the paper.

Funding

This work is supported by National Natural Science Foundation of China (Grants Nos. 12071194, 12171089, 11571155); Natural Science Foundation of Fujian (Grant No. 2021J02048).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this paper.

Corresponding author

Correspondence to Shou-Jun Xu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, YP., Li, J. & Xu, SJ. On Extremal Graphs for Zero Forcing Number. Graphs and Combinatorics 38, 185 (2022). https://doi.org/10.1007/s00373-022-02591-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02591-y

Keywords

Mathematics Subject Classification