Skip to main content
Log in

The Maximum Spectral Radius of Graphs without Spanning Linear Forests

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a family \(\mathcal {F}\) of graphs, a graph G is called \(\mathcal {F}\)-free if G contains none of \(\mathcal {F}\) as its subgraph. The following problem is one of the most concerned problems in spectral extremal graph theory: what is the maximum spectral radius of an n-vertex \(\mathcal {F}\)-free graph? If each connected component of a graph is either a path (star) or an isolated vertex, then we call it a linear (star) forest. Denote by \(\mathcal {L}_{n,k}\) and \(\mathcal {S}_{n,k}\) the family of all n-vertex linear forests and star forests with k edges, respectively. In this paper, we obtain the maximum spectral radius of an n-vertex \(\mathcal {L}_{n,k}\)-free graph and characterize the extremal graphs based on Kelmans transformation. Also, we obtain the maximum spectral radius of an n-vertex \(\mathcal {S}_{n,k}\)-free graph and characterize the unique extremal graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Akiyama, J., Frankl, P.: On the size of graphs with complete-factors. J. Graph Theory 9, 197–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai, L., Guiduli, B.: Spectral extrema for graphs: the Zarankiewicz problem. Electron. J. Combin. 16(1),(2009) #R123, 8pp

  3. Bollobás, B.: Modern Graph Theory. Springer, New York (2013)

    MATH  Google Scholar 

  4. Chen, M.-Z., Liu, A.-M., Zhang, X.-D.: Spectral extremal results with forbidding linear forests. Graphs Combin. 35, 335–351 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, M.-Z., Liu, A.-M., Zhang, X.-D.: On the spectral radius of graphs without a star forest. Dicrete Math. 344, 112269 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cioabǎ, S., Feng, L.H., Tait, M., Zhang, X.-D.: The maximum spectral radius of graphs without friendship subgraphs. Electron. J. Combin. 27(4),(2020) #P4.22, 19pp

  7. Cioabǎ, S., Desai, D., Tait, M.: The spectral radius of graphs with no odd wheels. Eur. J. Combin. 99, 103420 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Csikvári, P.: Applications of the Kelmans transformation: extremality of the threshold graphs. Electron. J. Combin. 18(1), (2011) #P182, 24pp

  9. Csikvári, P.: On a conjecture of V. Nikiforov. Discrete Math. 309(13), 4522–4526 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hungar 10, 337–356 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, L., Yu, G., Zhang, X.-D.: Spectral radius of graphs with given matching number. Linear Algebra Appl. 422, 133–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fűredi, Z., Simonovits, M.: The history of degenerate (bipartite) extremal graph problems. Erdős centennial, 169–264, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013

  13. Gao, J., Hou, X.: The spectral radius of graphs without long cycles. Linear Algebra Appl. 566, 17–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guiduli, B.: Spectral Extrema for Graphs(Ph.D. thesis), University of Chicago (1998)

  15. Guo, S.-G., Zhang, R.: The sharp upper bounds on the \(A_{\alpha }\)-spectral radius of \(C_4\)-free graphs and Halin graphs. Graphs Combin. 38, 19 (2022)

    Article  MATH  Google Scholar 

  16. Hou, X., Liu, B., Wang, S., Gao, J., Lv, C.: The spectral radius of graphs without trees of diameter at most four. Linear Multilinear Algebra 69(8), 1407–1414 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Keevash, P.: Hypergraph Turán Problems, in Surveys in Combinatorics, pp. 83–140. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  18. Li, Y., Peng, Y.: The spectral radius of graphs with no intersecting odd cycles. Discrete Math. 345(8), 112907 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mantel, W.: Problem 28. Wiskundige Opgaven 10, 60–61 (1907)

    Google Scholar 

  20. Nikiforov, V.: Some new results in extremal graph theorey, in: Surveys in Combinatorics 2011, in: London Math. Soc. Lecture Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, pp. 141–181 (2011)

  21. Nikiforov, V.: Bounds on graph eigenvalues II. Linear Algebra Appl. 427, 183–189 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nikiforov, V.: The maximum spectral radius of \(C_4\)-free graphs of given order and size. Linear Algebra Appl. 430(11–12), 2898–2905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nikiforov, V.: A contribution to the Zarankiewicz problem. Linear Algebra Appl. 432(6), 1405–1411 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nikiforov, V.: The spectral radius of graphs without paths and cycles of specified length. Linear Algebra Appl. 432(9), 2243–2256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ning, B., Wang, J.: The formula for Turán number of spanning linear forests. Discrete Math. 343, 111924 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Simonovits, M.: Paul Erdős’ influence on Extremal graph theory, in The Mathematics of Paul Erdős II, pp. 245–311, R.L. Graham, Springer, New York (2013)

  27. Tait, M., Tobin, J.: Three conjectures in extremal spectral graph theory. J. Combin. Theory Ser. B 126, 137–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436–452 (1941). (in Hungarian)

    MathSciNet  MATH  Google Scholar 

  29. Wang, J.: The shifting method and generalized Turán number of matchings. Eur. J. Combin. 85, 103057 (2020)

    Article  MATH  Google Scholar 

  30. Zhai, M., Lin, H.: Spectral extrema of graphs: forbidden hexagon. Discrete Math. 343(10), 112028 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhai, M., Wang, B.: Proof of a conjecture on the spectral radius of \(C_4\)-free graphs. Linear Algebra Appl. 437, 1641–1647 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhai, M., Wang, B., Fang, L.: The spectral Turán problem about graphs with no 6-cycle. Linear Algebra Appl. 590, 22–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, L.-P., Wang, L., Zhou, J.: The Turán number of spanning star forests. Discuss. Math. Graph Theory. (2020). https://doi.org/10.7151/dmgt.2368. (Online)

    Article  Google Scholar 

  34. Zhang, L.-P., Wang, L., Zhou, J.: The generalized Turán number of spanning linear forests. Graphs Combin. 38(2), 40 (2022)

    Article  MATH  Google Scholar 

  35. Zhao, Y., Huang, X., Lin, H.: The maximum spectral radius of wheel-free graphs. Discrete Math. 344(5), 112341 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous referees for providing valuable comments and suggestions which improved the presentation of this paper.

Funding

Supported by the National Natural Science Foundation of China (No. 12271439) and China Scholarship Council (No. 202206290003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LP., Wang, L. The Maximum Spectral Radius of Graphs without Spanning Linear Forests. Graphs and Combinatorics 39, 9 (2023). https://doi.org/10.1007/s00373-022-02608-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02608-6

Keywords

Mathematics Subject Classification