Skip to main content
Log in

Minimum Number of Edges Guaranteeing the Existence of a \(K_{1, t}\)-Factor in a Graph

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let t,  k,  d be integers with \(1 \le d \le k - 1\) and \(t \ge 8d + 11\), and let \(n = k(t+1)\). We show that if G is a graph of order n such that \(\delta (G) \ge d\) and \(|E(G)| \ge \left( {\begin{array}{c}n\\ 2\end{array}}\right) - (d + 1)n + dt + \frac{1}{2}(d^{2} + 3d + 4)\), then G has a \(K_{1, t}\)-factor. We also give a construction showing the sharpness of the condition on |E(G)|.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Akiyama, J., Frankl, P.: On the size of graphs with complete factors. J. Graph Theory 9, 197–201 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balogh, J., Kostochka, A.V., Treglown, A.: On perfect packings in dense graphs. Electron. J. Combin. 20(1), #57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bermond, J.-C.: On Hamiltonian walks. In: Nash-Williams, C.St.J.A., Sheehan, J. (eds.) Proceedings of the Fifth British Combinatorial Conference, Utilitas Math., pp. 44–51 (1976)

  4. Bollóbas, B.: Extremal Graph Theory. Dover Publications, New York (2004)

    MATH  Google Scholar 

  5. Bondy, J.A.: Large cycles in graphs. Discrete Math. 1, 121–132 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooley, O., Kühn, D., Osthus, D.: Perfect packings with complete graphs minus an edge. Eur. J. Combin. 28, 2143–2155 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diestel, R.: Graph Theory, Graduate Texts in Mathematics 173, 4th edn. Springer, Berlin (2010)

    Google Scholar 

  8. Erdős, P.: Remarks on a paper of Pósa. Publ. Math. Inst. Hunger. Acad. Sci. 7, 227–229 (1962)

    MATH  Google Scholar 

  9. Erdős, P., Gallai, T.: On the minimal number of vertices representing the edges of a graph. Publ. Math. Inst. Hungar. Acad. Sci. 6, 181–203 (1961)

    MathSciNet  MATH  Google Scholar 

  10. Füredi, Z., Kostochka, A., Luo, R.: A stability version for a theorem of Erdős on nonhamiltonian graphs. Discrete Math. 340, 2688–2690 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Füredi, Z., Kostochka, A., Luo, R.: Extensions of a theorem of Erdős on nonhamiltonian graphs. J. Graph Theory 89, 176–193 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawarabayashi, K.: \(K_{4}^{-}\)-factor in a graph. J. Graph Theory 39, 111–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Keevash, P., Mycroft, R.: A multipartite Hajnal–Szemerédi theorem. J. Combin. Theory Ser. B 114, 187–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Komlós, J., Sárközy, G.N., Szemerédi, E.: Proof of the Alon–Yuster conjecture. Discrete Math. 235, 255–269 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kühn, D., Osthus, D.: The minimum degree threshold for perfect graph packings. Combinatorica 29, 65–107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, B., Ning, B.: Spectral analogues of Erdős’ and Moon–Moser’s theorems on Hamilton cycles. Linear Multilinear Algebra 64, 2252–2269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, J., Ning, B.: Stability results on the circumference of a graph. Combinatorica 40, 105–147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nenadov, R., Pehova, Y.: On a Ramsey–Turán variant of the Hajnal–Szemerédi theorem. SIAM J. Discrete Math. 34, 1001–1010 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Treglown, A.: On directed versions of the Hajnal–Szemerédi theorem. Combin. Probab. Comput. 24, 873–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Woodall, D.R.: Sufficient conditions for circuits in graphs. Proc. Lond. Math. Soc. 3(24), 739–755 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Funding was supported by Japan Society for the Promotion of Science (17K05347, 20K03720, 19K03603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuya Chiba.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shuya Chiba was supported by JSPS KAKENHI Grant numbers 17K05347, 20K03720. Shinya Fujita was supported by JSPS KAKENHI Grant number 19K03603.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, S., Egawa, Y. & Fujita, S. Minimum Number of Edges Guaranteeing the Existence of a \(K_{1, t}\)-Factor in a Graph. Graphs and Combinatorics 39, 27 (2023). https://doi.org/10.1007/s00373-023-02616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02616-0

Keywords

Mathematics Subject Classification