Skip to main content
Log in

Similarity of interspike interval distributions and information gain in a stationary neuronal firing

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The Kullback–Leibler (KL) information distance is proposed for judging similarity between two different interspike interval (ISI) distributions. The method is applied by a comparison of four common ISI descriptors with an exponential model which is characterized by the highest entropy. Under the condition of equal mean ISI values, the KL distance corresponds to information gain coming from the state described by the exponential distribution to the state described by the chosen ISI model. It has been shown that information can be transmitted changing neither the spike rate nor coefficient of variation (CV). Furthermore the KL distance offer an indication of the exponentiality of the chosen ISI descriptor (or data): the distance is zero if, and only if, the ISIs are distributed exponentially. Finally an application on experimental data coming from the olfactory sensory neurons of rats is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  • Adrian ED (1928) The basis of sensation. W. W. Norton, New York

    Google Scholar 

  • Beirlant J, Dudewicz EJ, Gyorfi L, van der Meulen EC (1997) Nonparametric entropy estimation: an overview. Int J Math Stat Sci 6:17–39

    Google Scholar 

  • Berger D, Pribram K, Wild H, Bridges C (1990) An analysis of neural spike train distributions: determinants of the response of visual cortex neurons to changes in orientation and spatial frequency. Exp Brain Res 80:129–134

    Article  PubMed  CAS  Google Scholar 

  • Berger D, Pribram K (1992) The relationship between the gabor elementary function and a stochastic model of interspike interval distribution in the responses of visual cortex neurons. Biol Cybern 67:191–194

    Article  PubMed  CAS  Google Scholar 

  • Bershadskii A, Dremencov E, Fukayama D, Yadid G (2001) Probabilistic properties of neuron spiking time series obtained in vivo. Eur Phys J B 24:409–413

    Article  CAS  Google Scholar 

  • Berry II MJ, Meister M (1998) Refractoriness and neural precision. J Neurosci 6:2200–2211

    Google Scholar 

  • Bhumbra GS, Inyushkin AN, Dyball REJ (2004) Assessment of spike activity in the supraoptic nucleus. J Neuroendocrin 16:390–397

    Article  CAS  Google Scholar 

  • Borst A, Theunissen FE (1999) Information theory and neural coding. Nature Neurosci 2:947–957

    Article  PubMed  CAS  Google Scholar 

  • Buracas GT, Albright TD (1999) Gauging sensory representations in the brain. Trends Neurosci 22:303–309

    Article  PubMed  CAS  Google Scholar 

  • Chacron MJ, Longtin A, Maler L (2001) Negative interspike interval correlations increase the neuronal capacity for encoding time-dependent stimuli. J Neurosci 21:5328–5343

    PubMed  CAS  Google Scholar 

  • Chhikhara RS, Folks JL (1989) The inverse Gaussian distribution: theory, methodology and applications. Marcel Dekker, New York

    Google Scholar 

  • Choi B, Kim K, Song SH (2004) Goodness-of-fit test for exponentiality based on Kullback-Leibler information. Commun Stat-Simul C 33(2):525–536

    Article  Google Scholar 

  • Christodoulou C, Bugmann G (2001) Coefficient of variation vs. mean interspike interval curves: what do they tell us about the brain? Neurocomputing 38–40:1141–1149

    Article  Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley, New York

    Google Scholar 

  • DeWeese MR, Meister M (1999) How to measure the information gained from one symbol. Network: Comput Neural Syst 10:325–340

    Article  CAS  Google Scholar 

  • Duchamp-Viret P, Duchamp A, Chaput MA (2003) Single olfactory sensory neurons simultaneously integrate the components of an odor mixture. Eur J Neurosci 10:2690–2696

    Article  Google Scholar 

  • Duchamp-Viret P, Chaput MA, Kostal L, Lansky P, Rospars J-P (2005) Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J Neurobiol 65:97–114

    Article  PubMed  Google Scholar 

  • Ebrahimi N, Habibullah M, Soofi ES (1992) Testing exponentiality based on Kullback-Leibler Information. J Stat Soc B 3:739–748

    Google Scholar 

  • Gerstein G, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68

    PubMed  CAS  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gibbons JD (1971) Nonparametric Statistical Inference. McGraw-Hill, New York

    Google Scholar 

  • Han YMY, Chan YS, Lo KS, Wong TM (1998) Spontaneous activity and barosensitivity of the barosensitive neurons in the rostral ventrolateral medulla of hypertensive rats induced by transection of aortic depressor nerves. Brain Res 813:262–267

    Article  PubMed  CAS  Google Scholar 

  • Hentall ID (2000) Interactions between brainstem and trigeminal neurons detected by cross-spectral analysis. Neuroscience 96:601–610

    Article  PubMed  CAS  Google Scholar 

  • Holt GR, Softky WR, Koch C, Douglas RJ, (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806–1814

    PubMed  CAS  Google Scholar 

  • Iynegar S, Liaom Q (1997) Modeling neural activity using the generalized inverse Gaussian distribution. Biol Cybern 77:289–295

    Article  Google Scholar 

  • Jaynes ET (1968) Prior probabilities. IEEE Trans Syst Sci Cybern 3:227–241

    Google Scholar 

  • Johnson DH, Glantz RM (2004) When does interval coding occur?. Neurocomputing 58–60:13–18

    Article  Google Scholar 

  • Kozachenko LF, Leonenko NN (1987) On statistical estimation of entropy of a random vector. Probl Inf Transm 23:95–101

    Google Scholar 

  • Lansky P, Rodriguez R, Sacerdote L (2004) Mean instantaneous firing frequency is always higher than the firing rate. Neural Comput 16:477-489

    Article  PubMed  Google Scholar 

  • Levine MW (1991) The distribution of the intervals between neural impulses in the maintained discharges of retinal ganglion cells. Biol Cybern 65:459–467

    Article  PubMed  CAS  Google Scholar 

  • Lewis CD, Gebber GL, Larsen PD, Barman SM (2001) Long-term correlations in the spike trains of medullary sympathetic neurons. J Neurophysiol 85:1614–1622

    PubMed  CAS  Google Scholar 

  • Ling YB, He B (1993) Entropic analysis of biological growth models. IEEE Trans Bio-Med Eng 40:48–54

    Google Scholar 

  • van der Lubbe JCA (1997) Information theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Mandl G (1992) Coding for stimulus velocity by temporal patterning of spike discharges in visual cells of cat superior colliculus. Vision Res 33:1451–1475

    Article  Google Scholar 

  • McKeegan DEF (2002) Spontaneous and odor evoked activity in single avian olfactory bulb neurons. Brain Res 929:48–58

    Article  PubMed  CAS  Google Scholar 

  • Miller EG, Fisher III JW (2003) ICA using space estimates of entropy. J Mach Learn Res 4:1271–1295

    Article  Google Scholar 

  • Nemenman I, Bialek W, de Ruyter van Steveninck RR (2004) Entropy and information in spike trains: progress on the sampling problem. Phys Rev E 69:056111-1–056111-6

    Article  CAS  Google Scholar 

  • Paninski L (2003) Estimation of entropy and mutual information. Neural Comput 15:1191–1253

    Article  Google Scholar 

  • Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. Biophys J 4:391–418

    Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  • Reeke NR, Coop AD (2004) Estimating the temporal entropy of neuronal discharge. Neural Comput 16:941–970

    Article  PubMed  Google Scholar 

  • Rospars J-P, Lansky P, Vaillant J, Duchamp-Viret P, Duchamp A (1994) Spontaneous activity of first- and second-order neurons in the frog olfactory system. Brain Res 662:31–44

    Article  PubMed  Google Scholar 

  • Rozell CJ, Johnson DH, Glantz RM (2004) Measuring information transfer in the spike generator of crayfish sustaining fibers. Biol Cybern 90:89–97

    Article  PubMed  Google Scholar 

  • Ruskin DN, Bergstrom D A, Walters JR (2002) Nigrostriatal lesion and dopamine agonists affect firing patterns of rodent entopeduncular nucleus neurons. J Neurophysiol 88:487–496

    PubMed  CAS  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. AT&T Tech J 27:379–423

    Google Scholar 

  • Shinomoto S, Yutaka S, Hiroshi O (2002) Recording site dependence of the neuronal spiking statistics. Biosystems 67:259–263

    Article  PubMed  Google Scholar 

  • Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823–2842

    Article  PubMed  Google Scholar 

  • Soofi ES, Ebrahimi N, Habibullah M (1995) Information distinguishability with application to analysis of failure data. J Am Stat Assoc 90:57–668

    Article  Google Scholar 

  • Stein RB (1967) The information capacity of nerve cells using a frequency code. Biophys J 7:797–826

    Article  PubMed  CAS  Google Scholar 

  • Stevens CF, Zador A (1995) Information through a spiking neuron. Adv Neural Inf Proc Syst 8:75–81

    Google Scholar 

  • Strong SP, Koberle R, de Ruyter van Steveninck RR, Bialek W (1998) Entropy and information in spike trains. Phys Rev Lett 80:197–200

    Article  CAS  Google Scholar 

  • Tarantola A (1994) The inverse problem theory. Elsevier, Amsterdam

    Google Scholar 

  • Tarantola A, Valette B (1982) Inverse problems = quest for information. J Geophys 50:159–170

    Google Scholar 

  • Tsybakov AB, van der Meulen EC (1996) Root-n consistent estimators of entropy for densities with unbounded support. Scand J Stat 23:75–83

    Google Scholar 

  • Vasicek O (1976) A test for normality based on sample entropy. J Stat Soc B 38:54–59

    Google Scholar 

  • Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol 79:1219–1229

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Kostal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostal, L., Lansky, P. Similarity of interspike interval distributions and information gain in a stationary neuronal firing. Biol Cybern 94, 157–167 (2006). https://doi.org/10.1007/s00422-005-0036-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0036-6

Keywords

Navigation