Skip to main content

Advertisement

Log in

Enhancement of Perceptually Salient Contours using a Parallel Artificial Cortical Network

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this paper we present a parallel artificial cortical network inspired by the Human visual system, which enhances the salient contours of an image. The network consists of independent processing elements, which are organized into hypercolumns. They process concurrently the distinct orientations of all the edges of the image. These processing elements are a new set of orientation kernels appropriate for the discrete lattice of the hypercolumns. The Gestalt laws of proximity and continuity that describe the process of saliency extraction in the human brain are encoded by means of weights. These weights interconnect the kernels according to a novel connection pattern based on co-exponentiality. The output of every kernel is modulated by the outputs of its neighboring kernels, according to a new affinity function. This function takes into account the degree of difference between the facilitation of the two lobes of the kernel. Saliency enhancement results as a consequence of the local interactions between the kernels. The network was tested on real and synthetic images and displays promising results for both. Comparisons with other methods with the same scope, demonstrate that the proposed method performs adequately. Furthermore it exhibits O(N) complexity with execution times that have never been reported by any other method so far, even though it is executed on a conventional PC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alter TD, Basri R (1998) Extracting salient curves from images: an analysis of the salience network. Int J Comput Vis 27:51–69

    Article  Google Scholar 

  • Ben-Shahar O, Huggins PS, Izo T, Zucker SW (2003) Cortical connections and early visual function: intra- and inter-columnar processing. J Physiol Paris 97:191–208

    Article  PubMed  Google Scholar 

  • Braun J (1999) On the detection of salient contours. Spat Vis 12(2):211–225

    PubMed  CAS  Google Scholar 

  • Choe Y, Miikkulainen R (2004) Contour integration and segmentation with self-organized lateral connections. Biol Cybern 90:75–88

    Article  PubMed  Google Scholar 

  • Field DJ, Hayes A (2004) Contour integration and the lateral connections of V1 neurons. In: The visual neurosciences, vol 2. MIT Press, Cambridge pp 1069–1079

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “association field”. Vis Res 33:173–193

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick D (1996) The functional-organization of local circuits in visual-cortex – insights from the study of tree shrew striate cortex. Cereb Cortex 6:329–341

    Article  PubMed  CAS  Google Scholar 

  • Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13:891–906

    Article  Google Scholar 

  • Geisler WS, Perry JS, Super BJ, Gallogly DP (2001) Edge co-occurrence in natural images predicts contour grouping performance. Vis Res 41:711–724

    Article  PubMed  CAS  Google Scholar 

  • Gilbert CD, Das A, Ito M, Kapadia M, Westheimer G (1996) Spatial integration and cortical dynamics. Proc Nat Acad Sci USA 93:615–622

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S (1994) 3-d vision and figure-ground separation by visual cortex. Percep Psychophys 55:48–121

    CAS  Google Scholar 

  • Grossberg S (2004) Visual boundaries and surfaces. In: The visual neurosciences, vol 2. MIT Press, Cambridge pp 1624–1639

  • Grossberg S, Mingolla E (1985) Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. Percept Psychophys 38:141–171

    PubMed  CAS  Google Scholar 

  • Grossberg S, Mingolla E, Williamson J (1995) Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation. Neural Netw 8:1005–1028

    Article  Google Scholar 

  • Herault L, Horaud R (1993) Figure-ground discrimination: a combinatorial optimisation approach. IEEE Trans Pattern Analy Mach Intell 15:899–914

    Article  Google Scholar 

  • Hess RF, Hayes A, Field DJ (2003) Contour integration and cortical processing. J Physiol Paris 97:105–119

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in nonstriate areas (188 and 19) of the cat. J Neurophysiol 28:229–289

    PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields, binocular interaction and functional architecture of monkey striate cortex. J Physiol 195:215–243

    PubMed  CAS  Google Scholar 

  • Kapadia MK, Ito M, Gilbert CD, Westheimer G (1995) Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15:843–856

    Article  PubMed  CAS  Google Scholar 

  • Kapadia MK, Westheimer G, Gilbert CD (2000) Spatial distribution of contextual interactions in primary visual cortex and in visual perception. F. Neurophysiology 84:2048–2062

    CAS  Google Scholar 

  • Kovács I, Julesz B (1993) A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Nat Acad Sci 90:7495–7497

    Article  PubMed  Google Scholar 

  • Kovács I, Julesz B (1994) Perceptual sensitivity maps within globally defined visual shapes. Nature 370:644–646

    Article  PubMed  Google Scholar 

  • Lance W, Karvel T (2000) A comparison of measures for detecting natural shapes in cluttered backgrounds. Int J Comput Vis 34:81–96

    Google Scholar 

  • Li Z (1998) A neural model of contour integration in the primary visual cortex. Neural Comput 10:903–940

    Article  PubMed  CAS  Google Scholar 

  • Mahamud S, Williamns LR, Thornber KK, Xu K (2003) Segmentation of multiple salient closed contours from real images. IEEE Trans Pattern Anal Mach Intell 25:433–444

    Article  Google Scholar 

  • Mundhenk TN, Itti L (2002) A model of contour integration in early visual cortex. In: Proceedings of 2nd international workshop on biologically motivated computer vision, pp 80–89

  • Mundhenk TN, Itti L (2003) CINNIC, a new computational algorithm for the modeling of early visual contour integration in humans. Neurocomputing 52–54:599–604

    Google Scholar 

  • Mundhenk TN, Itti L (2005) Computational modelling and exploration of contour integration for visual saliency. Biol Cybern 93:188–212

    Article  PubMed  Google Scholar 

  • Newsome WT, Britten KH, Movshon JA (1989) Neuronal correlates of a perceptual decision. Nature 341:52–54

    Article  PubMed  CAS  Google Scholar 

  • Parent P, Zucker SW (1989) Trace inference, curvature consistency, and curve detection. IEEE Trans Pattern Anal Mach Intell 11:823–839

    Article  Google Scholar 

  • Perona P (1992) Steerable-scalable kernels for edge detection and junction analysis. In: Proceedings of 2nd European conference computer vision, pp 3–18

  • Perona P (1995) Deformable kernels for early vision. IEEE Trans Pattern Anal Mach Intell 17:488–499

    Article  Google Scholar 

  • Pettet MW, McKee SP, Grzywacz NM (1998) Constrains on long-range interactions mediating contour-detection. Vis Res 38:865–879

    Article  PubMed  CAS  Google Scholar 

  • Polat UK, Mizobe K, Pettet MW, Kasamatsu T, Norcia AM (1998) Collinear stimuli regulate visual responses depending on cell’s contrast threshold. Nature 391:580–584

    Article  PubMed  CAS  Google Scholar 

  • Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Sci 215:532–534

    Article  Google Scholar 

  • Rockland KS, Lund JS (1983) Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol 216:303–318

    Article  PubMed  CAS  Google Scholar 

  • Ross WD, Mingolla E (1998) Recent progress in modeling neural mechanisms of form and color vision. Image Vis Comput 16:447–472

    Article  Google Scholar 

  • Shashua A, Ullman S (1988) Structural saliency: the detection of globally salient structures using a locally connected network. In: Proceeding of 2nd ICCV, pp 321–327

  • Sincich LC, Blasdel GG (2001) Oriented axon projections in primary visual cortex of the monkey. J Neurosci 21:4416–4426

    PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586

    Article  PubMed  CAS  Google Scholar 

  • Soundararajan P, Sarkar S (2003) An in-depth study of graph partitioning measures for perceptual organization. IEEE Trans Pattern Anal Mach Intell 25:642–660

    Article  Google Scholar 

  • Wang S, Kubota T, Siskind JM, Wang J (2005) Salient closed boundary extraction with ratio contour. IEEE Trans Pattern Anal Mach Intell 27:546–560

    Article  PubMed  CAS  Google Scholar 

  • Watamaniuk SN, Sekuler R (1992) Temporal and spatial integration in dynamic random-dot stimuli. Vis Res 32:2341–2347

    Article  PubMed  CAS  Google Scholar 

  • Yen SC, Finkel LH (1997) Salient contour extraction by temporal binding in a cortically-based network. Adv Neural Inf Process Sys 10:915–921

    Google Scholar 

  • Yen SC, Finkel LH (1998) Extraction of perceptually salient contours by striate cortical networks. Vis Res 38:719–741

    Article  PubMed  CAS  Google Scholar 

  • Yen SC, Menschik ED, Finkel LH (1998) Cortical synchronization and perceptual salience. In: Computational neuroscience: trends in research, Plenum Press, New York, pp 125–130

  • Young RA (1987) The Gaussian derivative model for spatial vision: I. retinal mechanisms. Spat Vis 2:273–293

    PubMed  CAS  Google Scholar 

  • Young RA, Lesperance RM (1993) A physiological model of motion analysis for machine vision. Proc SPIE Int Soc Opt Eng 1913:48–123

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Vonikakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonikakis, V., Gasteratos, A. & Andreadis, I. Enhancement of Perceptually Salient Contours using a Parallel Artificial Cortical Network. Biol Cybern 94, 192–214 (2006). https://doi.org/10.1007/s00422-005-0040-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0040-x

Keywords

Navigation