Skip to main content

Advertisement

Log in

Variables Contributing to the Coordination of Rapid Eye/Head Gaze Shifts

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this article results of several published studies are synthesized in order to address the neural system for the determination of eye and head movement amplitudes of horizontal eye/head gaze shifts with arbitrary initial head and eye positions. Target position, initial head position, and initial eye position span the space of physical parameters for a planned eye/head gaze saccade. The principal result is that a functional mechanism for determining the amplitudes of the component eye and head movements must use the entire space of variables. Moreover, it is shown that amplitudes cannot be determined additively by summing contributions from single variables. Many earlier models calculate amplitudes as a function of one or two variables and/or restrict consideration to best-fit linear formulae. Our analysis systematically eliminates such models as candidates for a system that can generate appropriate movements for all possible initial conditions. The results of this study are stated in terms of properties of the response system. Certain axiom sets for the intrinsic organization of the response system obey these properties. We briefly provide one example of such an axiomatic model. The results presented in this article help to characterize the actual neural system for the control of rapid eye/head gaze shifts by showing that, in order to account for behavioral data, certain physical quantities must be represented in and used by the neural system. Our theoretical analysis generates predictions and identifies gaps in the data. We suggest needed experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5(5):457–469

    Article  Google Scholar 

  • Barnes GR (1979) Vestibulo-ocular function during co-ordinated head and eye movements to acquire visual targets. J Physiol (Lond) 287:127–147

    CAS  Google Scholar 

  • Becker W, Jürgens R (1992) Gaze saccades to visual targets: does head movement change the metrics?. In: Berthoz A, Graf W, Vidal PP (eds) The head–neck sensory motor system. Oxford University Press, New York,

    Google Scholar 

  • Bizzi E (1981) Eye–head coordination. In: Brooks V (ed) Handbook of physiology – the nervous system, sect. 1, vol 2, Part 2. Am Physiol Soc, Bethesda, pp. 1321–1326

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann NY Acad Sci 781:244–63

    Article  PubMed  CAS  Google Scholar 

  • Buttner- Ennever JA, Horn AKE, Graf W, Ugolini G (2002) Modern concepts of brainstem anatomy: from extraocular motoneurons to proprioceptive pathways. Ann NY Acad Sci 956:75–84

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, Steinman RM, Erkelens CJ, Pizlo Z, van der Steen J (1992) Effect of freeing the head on eye movement characteristics during three-dimensional shifts of gaze and tracking. In: Berthoz A, Graf W, Vidal PP (eds) The head–neck sensory motor system. Oxford University Press, New York

    Google Scholar 

  • Corneil BD, Munoz DP (1999) Human eye–head gaze shifts ina distractor task. II. reduced threshold for initiation of early head movements. J Neurophysiol 82:1406–21

    PubMed  CAS  Google Scholar 

  • Corneil BD, Hing CA, Bautista DV, Munoz DP (1999) Human eye–head gaze shifts in a distractor task. I. Truncated gaze shifts. J Neurophysiol 82:1390–1405

    CAS  Google Scholar 

  • Crawford JD, Guitton D (1997a) Visual-motor transformations required for accurate and kinematically correct saccades. J Neurophysiol 78:1447–1467

    PubMed  CAS  Google Scholar 

  • Crawford JD, Guitton D (1997b) Primate head-free saccade generator implements a desired (post-VOR) eye position command by anticipating intended head motion. J Neurophysiol 78:2811–2816

    CAS  Google Scholar 

  • Delreux V, Vanden Abeele S, Lefevre P, Roucoux A (1993) Eye-head coordination: influence of eye position on the control of head movement amplitude. In: Paillard J (eds) Brain and space. Oxford University Press, New York, pp 101–112

    Google Scholar 

  • Elsinger CL, Rosenbaum DA (2003) End posture selection in manual positioning: evidence for feedforward modeling based on a movement choice method. Exp Brain Res 152(4):499–509

    Article  PubMed  Google Scholar 

  • Epelboim J, Kowler E, Steinman RM, Collewijn H, Erkelens CJ, Pizlo Z (1995) When push comes to shove: compensation for passive perturbation of the head during natural gaze shifts. J Vestib Res 5(6):421–442

    Article  PubMed  CAS  Google Scholar 

  • Epelboim J, Steinman RM, Kowler E, Pizlo Z, Erkelens CJ, Collewijn H (1997) Gaze-shift dynamics in two kinds of sequential looking tasks. Vision Res 37(18):2597–2607

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG (2001) Interactions between eye and head control signals can account for movement kinematics. Biol Cybern 84:453–462

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG, Sparks DL (1997a) Eye-head coordination during head-unrestrained gaze shifts in Rhesus monkeys. J Neurophysiol 77:2328–2348

    PubMed  CAS  Google Scholar 

  • Freedman EG, Sparks DL (1997b) Activity of cells in the deeper layers of the superior colliculus of the rheses monkey: evidence for a gaze displacement command. J Neurophysiol 78:1669–1690

    PubMed  CAS  Google Scholar 

  • Freedman EG, Sparks DL (2000) Coordination of the eyes and head: movement kinematics. Exp Brain Res 131:22–32

    Article  PubMed  CAS  Google Scholar 

  • Fuller JH (1992a) Comparison of head movement strategies among mammals. In: Berthoz A, Graf W, Vidal PP (eds) The head–neck sensory motor system. New York: Oxford University Press, New York

  • Fuller JH (1992b) Head movement propensity. Exp Brain Res 92:152–164

    Article  CAS  Google Scholar 

  • Fuller JH (1996) Comparison of horizontal head movements evoked by auditory and visual targets. J Vestib Res 6(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  • Glenn B, Vilis T (1992) Violations of listing’s law after large eye and head gaze shifts. J Neurophysiol 68(1):309–318

    PubMed  CAS  Google Scholar 

  • Goldring JE, Dorris MC, Corneil BD, Ballantyne PA, Munoz DP (1996) Combined eye–head gaze shifts to visual and auditory targets in humans. Exp Brain Res 111:68–78

    Article  PubMed  CAS  Google Scholar 

  • Goossens HHLM, van Opstal AJ (1997) Human eye–head coordination in two dimensions under different sensorimotor conditions. Exp Brain Res 114:542–560

    Article  PubMed  CAS  Google Scholar 

  • Goossens HHLM, van Opstal AJ (1999) Influence of head position on the spatial representation of acoustic targets. J Neurophysiol 81:2720–2736

    PubMed  CAS  Google Scholar 

  • Gresty MA (1974) Coordination of head and eye movements to fixate continuous and intermittent targets. Vision Res 14:395–403

    Article  PubMed  CAS  Google Scholar 

  • Guitton D, Volle M (1989) Gaze control in humans: eye–head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol 58(3): 427–459

    PubMed  CAS  Google Scholar 

  • Guitton D, Munoz DP, Galiana HL (1990) Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J Neurophysiol 64(2):509–531

    PubMed  CAS  Google Scholar 

  • Guitton D, Munoz DP, Galiana HL (1992) Mechanisms of gaze control and eye–head coupling in the cat whose head is unrestrained. In: Berthoz A, Graf W, Vidal PP (eds) The head–neck sensory motor system. Oxford University Press, New York

    Google Scholar 

  • Harris LR (1994) Visual motion caused by movements of the eye, head, and body. In: Smith AT, Snowden R (eds) Visual detection of motion. Academic, London, pp 397–436

    Google Scholar 

  • Herst AN, Epelboim J, Steinman RM (2001) Temporal coordination of the human head and eye during a natural sequential tapping task. Vision Res 41:3307–3319

    Article  PubMed  CAS  Google Scholar 

  • Karn KS, Moller P, Hayhoe MM (1997) Reference frames in saccadic targeting. Exp Brain Res 115:267–282

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1992) Predictable eye–head coordination during driving. Nature 359(6393):318–320

    Article  PubMed  CAS  Google Scholar 

  • Lefevre P, Optican L (2004) A model of saccades with separate gaze and head controllers. Society for Neuroscience Abstract 712.10

  • McCollum G, Boyle R (2001) Conditional transitions in gaze dynamics: role of vestibular nuclei in eye–only and eye/head gaze behaviors. Biol Cybern 85(6):423–436

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Gdowski GT (2003) Firing behaviour of squirrel monkey eye movement-related vestibular nucleus neurons during gaze saccades. J Physiol 546(1):207–224

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Luan H (2003) Signal processing of semicircular canal and otolith signals in the vestibular nuclei during passive and active head movements. Ann NY Acad Sci. 1004:169–182

    Article  PubMed  Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye–movement related neurons. J Neurophysiol 82(1):416–428

    PubMed  CAS  Google Scholar 

  • Millar S (1994) Understanding and representing space: theory and evidence from studies with blind and sighted children. Clarendon Press/Oxford University Press, Oxford

    Google Scholar 

  • Misslisch H, Tweed D, Vilis T (1998) Neural constraints in human eye–head saccades. J Neurophysiol 79:859–869

    PubMed  CAS  Google Scholar 

  • Oommen BS, Smith RM, Stahl JS (2004) The influence of future gaze orientation upon eye–head coupling during saccades. Exp Brain Res 155(1):9–18

    Article  PubMed  Google Scholar 

  • Phillips JO, Fuchs AF, Ling L, Iwamoto Y, Votaw S (1997) Gain adaptation of eye and head movement components of Simian gaze shifts. J Neurophysiol 78:2817–2821

    PubMed  CAS  Google Scholar 

  • Ron S, Berthoz A, Gur S (1993) Saccade-vestibulo-ocular reflex co-operation and eye–head uncoupling during orientation to flashed target. J Physiol 464:595–611

    PubMed  CAS  Google Scholar 

  • Scudder CA, Kaneko CRS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: A modern synthesis. Exp Brain Res 142:439–462

    Article  PubMed  Google Scholar 

  • Smith MA, Crawford JD (2005) Distributed population mechanism for the 3-D oculomotor reference frame transforation. J Neurophysiol 93(3):1742–1761

    Article  PubMed  Google Scholar 

  • Sparks DL (1989) The neural encoding of the location of targets for saccadic eye movements. J Exp Biol 146:195–207

    PubMed  CAS  Google Scholar 

  • Stahl JS (1997) Amplitude of human head movements associated with horizontal saccades. Exp Brain Res 126:41–54

    Article  PubMed  CAS  Google Scholar 

  • Stahl JS (2001) Adaptive plasticity of head movement propensity. Exp Brain Res 139:201–208

    Article  PubMed  CAS  Google Scholar 

  • Stahl JS (2002) Knowledge of future target position influences saccade-associated head movements. Ann NY Acad Sci 956:418–420

    PubMed  Google Scholar 

  • Tabak S, Jeroen B, Smeets J, Collewijn H (1996) Modulation of the human vestibuloocular reflex during saccades: probing by high-frequency oscillation and torque pulses of the head. J Neurophysiol 76(5):3249–3263

    PubMed  CAS  Google Scholar 

  • Tweed D, Glenn B, Vilis T (1995) Eye–head coordination during large gaze shifts. J Neurophysiol 73(2):766–779

    PubMed  CAS  Google Scholar 

  • Volle M, Guitton D (1993) Human gaze shifts in which head and eyes are not initially aligned. Exp Brain Res 94:463–470

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Hanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanes, D.A., McCollum, G. Variables Contributing to the Coordination of Rapid Eye/Head Gaze Shifts. Biol Cybern 94, 300–324 (2006). https://doi.org/10.1007/s00422-006-0049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0049-9

Keywords

Navigation