Skip to main content
Log in

Neural Signatures: Multiple Coding in Spiking–bursting Cells

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

An Erratum to this article was published on 23 January 2007

An Erratum to this article was published on 23 January 2007

Abstract

Recent experiments have revealed the existence of neural signatures in the activity of individual cells of the pyloric central pattern generator (CPG) of crustacean. The neural signatures consist of cell-specific spike timings in the bursting activity of the neurons. The role of these intraburst neural fingerprints is still unclear. It has been reported previously that some muscles can reflect small changes in the spike timings of the neurons that innervate them. However, it is unclear to what extent neural signatures contribute to the command message that the muscles receive from the motoneurons. It is also unknown whether the signatures have any functional meaning for the neurons that belong to the same CPG or to other interconnected CPGs. In this paper, we use realistic neural models to study the ability of single cells and small circuits to recognize individual neural signatures. We show that model cells and circuits can respond distinctly to the incoming neural fingerprints in addition to the properties of the slow depolarizing waves. Our results suggest that neural signatures can be a general mechanism of spiking–bursting cells to implement multicoding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brezina V, Orekhova F, Weiss KR (2000). The neuromuscular transform: the dynamic, nonlinear link between motor neuron firing patterns and muscle contraction in rhythmic behaviors. J Neurophysiol 83:207–231

    PubMed  CAS  Google Scholar 

  • Chi Z, Margoliash D (2001) Temporal precision and temporal drift in brain and behavior of zebra finch song. Neuron 32:899–910

    Article  PubMed  CAS  Google Scholar 

  • Dekhuijzen AJ, Bagust J (1996) Analysis of neural bursting: nonrhythmic and rhythmic activity in isolated spinal cord. J Neurosci Methods 67:141–147

    Article  PubMed  CAS  Google Scholar 

  • Elson RC, Huerta R, Abarbanel HDI, Rabinovich MI, Selverston AI (1999) Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. J Neurophysiol 82:115–122

    PubMed  CAS  Google Scholar 

  • Elson RC, Selverston AI, Rabinovich MI, Abarbanel HDI (2001) Dynamical roles of cellular properties in irregular bursting of a stomatogastric neuron. Soc Neuroscience Abs 27:730.10

    Google Scholar 

  • Fitzurka MA, Tam DC (1999) A joint interspike interval difference stochastic spike train analysis: detecting local trends in the temporal firing patterns of single neurons. Biol Cybern 80:309–326

    Article  PubMed  CAS  Google Scholar 

  • Goldman MS, Golowasch J, Marder E, Abbott F (2001). Global structure, robustness, and modulation of neuronal models. J Neurosci 21(14):5229–5238

    PubMed  CAS  Google Scholar 

  • Golowasch J, Casey M, Abbott LF, Marder E (1999a). Network stability from activity-dependent regulation of neuronal conductances. Neural Comput 11:1079–1096

    Article  CAS  Google Scholar 

  • Golowasch J, Manor Y, Nadim F (1999b) Recognition of slow processes in rhythmic networks. Trends Neurosci 22:375–377

    Article  CAS  Google Scholar 

  • Golowasch J, Goldman MS, Abbott F, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87:1129–1131

    PubMed  Google Scholar 

  • Gómez L, Budelli R, Stiber RSM, Segundo JP (2005) Pooled spike trains of correlated presynaptic inputs as realizations of cluster point processes. Biol Cybern 92:110–127

    Article  PubMed  Google Scholar 

  • Graubard K (1978) Synaptic transmission without action potentials: input–output properties of a nonspiking presynaptic neuron. J Neurophysiol 41:1014–1025

    PubMed  CAS  Google Scholar 

  • Harris-Warrick RM, Marder E, Selverston AI, Moulins M (eds) (1992) Dynamic biological networks: the stomatogastric nervous system. MIT, Cambridge

    Google Scholar 

  • Hartline DK, Maynard DM (1976) Mottor patterns in the stomatogastric ganglion of the lobster panulirus argus. J Exp Biol 62(2):405–420

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Hooper SL, Weaver AL (2000) Motor neuron activity is often insufficient to predict motor response. Curr Opin Neurobiol 10:676–682

    Article  PubMed  CAS  Google Scholar 

  • Hunter JD, Milton JG (2003) Amplitude and frequency dependence of spike timing: implications for dynamic regulation. J Neurophysiol 90:387–394

    Article  PubMed  Google Scholar 

  • Izhikevich E, Desai NS, Walcott EC, Hoppensteadt FC (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26(3):161–167

    Article  PubMed  CAS  Google Scholar 

  • Kepecs A, Lisman J (2003) Information enconding and computation with spikes and bursts. Network Comput Neural Syst 14:103–118

    Article  Google Scholar 

  • Komendantov AO, Kononenko NI (1996) Deterministic chaos in mathematical model of pacemaker activity in bursting neurons of snail, helix pomatia. J Theor Biol 183:219–230

    Article  PubMed  CAS  Google Scholar 

  • Krahe R, Gabbiani F (2004) Burst firing in sensory systems. Nature Rev Neurosc 5:13–24

    Article  CAS  Google Scholar 

  • Latorre R, Rodríguez FB, Varona P (2002) Characterization of triphasic rhythms in central pattern generators (i): Interspike interval analysis. Lecture notes in computer Science, vol 2415, pp 160–166

  • Latorre R, Rodríguez FB, Varona P (2004) Effect of individual spiking activity on rhythm generation of central pattern generators. Neurocomputing 58-60:535–540

    Google Scholar 

  • Lisman JE (1997) Busts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43

    Article  PubMed  CAS  Google Scholar 

  • Liu A, Golowasch J, Marder E, Abbott F (1998) A model neuron with activity-dependent conductances regulated by multiple calcium sensor. J Neurosci 18:2309–2320

    PubMed  CAS  Google Scholar 

  • Marder E (1997) Computational dynamics in rhythmic neural circuits. Neuroscientist 3:295–302

    Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11:R986–R996

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Masino MA, Calabrese RL (2002a) A functional asymmetry in the leech heartbeat timing network is revealed by driving the network across various cycle periods. J Neurosci 22:4418–4427

    CAS  Google Scholar 

  • Masino MA, Calabrese RL (2002b) Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. J Neurophysiol 87: 1603–1615

    Google Scholar 

  • McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Article  PubMed  CAS  Google Scholar 

  • Morris LG, Thuma JB, Hooper SL (2000) Muscles express motor patterns of non-innervating neural networkws by filtering broad-band input. Nat Neurosci 3:245–250

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Blitz DM, Swense AM, Wood D, Marder E (2001) The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–154

    Article  PubMed  CAS  Google Scholar 

  • Nusbaum MP, Beenhakken MP (2002) A small-system approach to motor pattern generation. Nature 417:343–350

    Article  PubMed  CAS  Google Scholar 

  • Oswald AM, Chacron MJ, Dorion B, Bastian J, Maler L (2004) Parallel processing of sensory input by bursts and isolated spikes. J Neurosci 24:4351–4362

    Article  PubMed  CAS  Google Scholar 

  • Pike FG, Meredith RM, Olding AWA, Paulsen O (1999) Postsynaptic bursting is essential for ’hebbian’ induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol (Lond) 518:571–576

    Article  CAS  Google Scholar 

  • Prinz AA, Thirumalai V, Marder E (2003) The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci 23(3):943–954

    PubMed  CAS  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004). Similar network activity from disparate circuit parameters. Nat Neurosci 7(12): 1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Raper, JA. (1979). Nonimpulse-mediated synaptic transmission during the generation of a cycle motor program. Science 205:304–306

    Article  PubMed  CAS  Google Scholar 

  • Reinagel P, Reid RC (2000) Temporal coding of visual information in the thalamus. J Neurosci 20:5392–5400

    PubMed  CAS  Google Scholar 

  • Reinagel P, Reid RC (2002) Precise firing events are conserved across neurons. J Neurosci 22(16):6837–6841

    PubMed  CAS  Google Scholar 

  • Rodríguez FB, Latorre R, Varona P (2002) Characterization of triphasic rhythms in central pattern generators (ii): burst information analysis. Lecture notes in computer Science 2415: 167–173

    Article  Google Scholar 

  • Russell DF, Hartline DK (1978) Bursting neural networks: a reexamination. Science 200(4340):453–456

    Article  PubMed  CAS  Google Scholar 

  • Segundo JP, Moore GP, Stensaas L, Bullock TH (1963) Sensitivity of neurons in aplysia to temporal pattern of arriving impulses. J Exp Biol 40:643–667

    PubMed  CAS  Google Scholar 

  • Segundo JP, Sugihara G, Dixon P, Stiber M, Bersier LF (1998) The spike trains of inhibited pacemaker neurons seen through the magnifying glass of non-linear analisy. Neuroscience 87:741–766

    Article  PubMed  CAS  Google Scholar 

  • Selverston AI, Moulins M (eds) (1987) The Crustacean Stomatogastric System: a model for the study of central nervous system. Springer, Berlin Heidelberg New York London Paris Tokyo

    Google Scholar 

  • Selverston AI, Elson RC, Rabinovich MI, Huerta R, Abarbanel HDI (1998) Basic principles for generating motor output in the stomatogastric ganglion. Ann NY Acad Sci 860(1):35–50

    Article  PubMed  CAS  Google Scholar 

  • Selverston AI, Rabinovich MI, Abarbanel HDI, Elson R, Szncs A, Pinto RD, Huerta R, Varona P (2000) Reliable circuits from irregular neurons: a dynamical approach to unterstanding central pattern generators. J Physiol (Paris) 94:357–374

    Article  CAS  Google Scholar 

  • Szücs A, Pinto RD, Rabinovich MI, Abarbanel HDI, Selverston AI (2003) Synaptic modulation of the interspike interval signatures of bursting pyloric neurons. J Neurophysiol 89:1363–1377

    Article  PubMed  Google Scholar 

  • Szücs A, Abarbanel HDI, Rabinovich MI, Selverston AI (2005) Dopamine modulation of spike dynamics in bursting neurons. Eur J Neurosci 2:763–772

    Article  Google Scholar 

  • Turrigiano GG, LeMasson G, Marder E (1995) Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. J Neurosci 15:3640–3652

    PubMed  CAS  Google Scholar 

  • Varona P, Torres JJ, Abarbanel HDI, Rabinovich MI, Elson R (2001a) Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis. Biol Cybern 84:91–101

    Article  CAS  Google Scholar 

  • Varona P, Torres JJ, Huerta R, Abarbanel HDI, Rabinovich MI (2001b) Regularization mechanisms of spiking-bursting neurons. Neural Netw 14:865–875

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Latorre.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00422-006-0140-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latorre, R., Rodríguez, F.B. & Varona, P. Neural Signatures: Multiple Coding in Spiking–bursting Cells. Biol Cybern 95, 169–183 (2006). https://doi.org/10.1007/s00422-006-0077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0077-5

Keywords

Navigation