Skip to main content
Log in

A visual model for object detection based on active contours and level-set method

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A visual model for object detection is proposed. In order to make the detection ability comparable with existing technical methods for object detection, an evolution equation of neurons in the model is derived from the computational principle of active contours. The hierarchical structure of the model emerges naturally from the evolution equation. One drawback involved with initial values of active contours is alleviated by introducing and formulating convexity, which is a visual property. Numerical experiments show that the proposed model detects objects with complex topologies and that it is tolerant of noise. A visual attention model is introduced into the proposed model. Other simulations show that the visual properties of the model are consistent with the results of psychological experiments that disclose the relation between figure–ground reversal and visual attention. We also demonstrate that the model tends to perceive smaller regions as figures, which is a characteristic observed in human visual perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Black MJ, Sapiro G, Marimont DH (1998) Robust anisotropic diffusion. 7(3):421–432

    Google Scholar 

  • Brox T, Rousson M, Deriche R, Weickert J (2003) Unsupervised segmentation incorporating colour, texture, and motion. Rapport de recherche de l’INRIA rr-4760

  • Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22:61–79

    Article  Google Scholar 

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10:266–277

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Wang D (2002) A dynamically coupled neural oscillator network for image segmentation. Neural Netw 15:423–439

    Article  PubMed  Google Scholar 

  • DeWeerd P, Desimone R, Ungerleider LG (1996) Cue-dependent deficits in grating orientation discrimination after V4 lesions in Macaque. Vis Neurosci 13:529–538

    Google Scholar 

  • DeWeerd P, Peralta P, Desimone MR, Ungerleider L (1999) Loss of attentional stimulus selection after extrastriate cortical lesions in Macaque. Nat Neurosci 2:753–758

    Article  CAS  Google Scholar 

  • Fox R, Herrmann J (1967) Stochastic properties of binocular rivalry alterations. Percept Psychophys 2:432–436

    Google Scholar 

  • Haralick R (1984) Digital step edges from zero crossing of second directional derivatives. IEEE Trans Pattern Anal Mach Intell 6:58–68

    Article  Google Scholar 

  • Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57:787–795

    PubMed  CAS  Google Scholar 

  • Hoshino O (2003) Coherent interaction of dynamical attractors for object-based selective attention. Biol Cybern 89:107–118

    Article  PubMed  Google Scholar 

  • Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of Macaque monkeys. J Neurosci 24:3313–3324

    Article  PubMed  CAS  Google Scholar 

  • Kanizsa G (1979) Organization in vision. Praeger, New York

    Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  • Kastner S, DeWeerd P, Ungerleider LG (2000) Texture segregation in the human visual cortex. J Neurophysiol 83:2453–2457

    PubMed  CAS  Google Scholar 

  • Kawabata N, Yamagami K (1977) Visual fixation points and depth perception. Vis Res 18:853–854

    Article  Google Scholar 

  • Kikuchi M, Fukushima K (2003) Assignment of figural side to contours based on symmetry, parallelism, and convexity. LNAI 2774:123–130

    Google Scholar 

  • Kimmel R, Bruckstein AM (2003) Regularized Laplacian zero crossings as optimal edge integrators. Int J Comput Vis 53:225–243

    Article  Google Scholar 

  • Koffka K (1935) Principles of gestalt psychology. Harcourt, New York

    Google Scholar 

  • Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35:1897–1916

    Article  PubMed  CAS  Google Scholar 

  • Kramer AF, Jacobson A (1991) Perceptual organization and focused attention: the role of objects and proximity in visual processing. Percept Psychophys 50:267–284

    PubMed  CAS  Google Scholar 

  • Lindeberg T (1994) Scale-space theory in computer vision. Kluwer, Dordrecht

    Google Scholar 

  • Lumer ED, Friston KJ, Rees G (1998) Neural correlates of perceptual rivalry in the human brain. Science 280:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17:158–175

    Article  Google Scholar 

  • Maunsell JH, Sclar G, Nealey TA, DePriest DD (1991) Extraretinal representations in area V4 in the Macaque monkey. Vis Neurosci 7:561–573

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Matsui N, Miyauchi S, Kakita Y, Yanagida T (2003) Discrete stochastic process underlying perceptual rivalry. Neuroreport 14:1347–1352

    Article  PubMed  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi Formulations. J Comput Phys 79:12–49

    Article  Google Scholar 

  • Pao H, Geiger D, Rubin N (1999) Measuring convexity for figure/ground separation. ICCV 2:20–25

    Google Scholar 

  • Pasupathy A, Connor CE (1999) Responses to contour features in Macaque area V4. J Neurophysiol 82:2490–2502

    PubMed  CAS  Google Scholar 

  • Possio T, Koch C (1992) Multiplying with synapses and neurons. Single neuron computation. Academic, Boston, pp 315–345

    Google Scholar 

  • Rizzolatti G, Riggio L, Dascola I, Umilta C (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25:31–40

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema PR, Lamme VAF, Spekreijse H, Bosch H (2002) Figure–ground segregation in a recurrent network architecture. J Cogn Neurosci 14:525–537

    Article  PubMed  Google Scholar 

  • Rossi AF, Desimone R, Ungerleider LG (2001) Contextual modulation in primary visual cortex of Macaque. J Neurosci 21(5):1698–1709

    PubMed  CAS  Google Scholar 

  • Rousson M, Brox T, Deriche R (2003) Active unsupervised texture segmentation on a diffusion based feature space. Rapport de recherche de l’INRIA rr-4695

  • Rumelhart DE, McClelland J (1986) Parallel distributed processing: explorations in the microstructure of cognition. MIT, Cambridge

    Google Scholar 

  • Sajda P, Finkel LH (1995) Intermediate-level visual representation and the construction of surface perception. J Cogn Neurosci 7:267–291

    Article  Google Scholar 

  • Satoh S, Miyake S (2004) A model of overt visual attention based on scale-space theory. Syst Comput Jpn 35:1490–1501

    Google Scholar 

  • Spratling MW, Johnson MH (2004) A feedback model of visual attention. J Cogn Neurosci 16(2):219–237

    Article  PubMed  CAS  Google Scholar 

  • Tai X, Chan TF (2004) A survey on multiple level set methods with applications for identifying piecewise constant functions. Int J Numer Anal Model 1:25–47

    Google Scholar 

  • Vecera SP, Flevaris AV, Filapek JC (2004) Exogenous spatial attention influences figure–ground assignment. Psychol Sci 15:20–26

    Article  PubMed  Google Scholar 

  • Wang D (1997) Image segmentation based on oscillatory correlation. Neural Comput 9:805–836

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Lesperance RM, Meyer WW (2001a) The gaussian derivative model for spatio-temporal vision: I. cortical model. Spat Vis 14:261–319

    Article  CAS  Google Scholar 

  • Young RA, Lesperance RM, Meyer WW (2001b) The gaussian derivative model for spatio-temporal vision: II. cortical data. Spat Vis 14:321–389

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Friedman HS, von der Heydt R (2000) Coding of border ownership in monkey visual cortex. J Neurosci 20:6594–6611

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Satoh.

Additional information

This work was partially supported by Grants-in-Aid for Scientific Research (#14780254) from Japan Society of Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, S. A visual model for object detection based on active contours and level-set method. Biol Cybern 95, 259–270 (2006). https://doi.org/10.1007/s00422-006-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0088-2

Keywords

Navigation