Skip to main content
Log in

Modeling biological motor control for human locomotion with functional electrical stimulation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This paper develops a novel control system for functional electrical stimulation (FES) locomotion, which aims to generate normal locomotion for paraplegics via FES. It explores the possibility of applying ideas from biology to engineering. The neural control mechanism of the biological motor system, the central pattern generator, has been adopted in the control system design. Some artificial control techniques such as neural network control, fuzzy logic, control and impedance control are incorporated to refine the control performance. Several types of sensory feedback are integrated to endow this control system with an adaptive ability. A musculoskeletal model with 7 segments and 18 muscles is constructed for the simulation study. Satisfactory simulation results are achieved under this FES control system, which indicates a promising technique for the potential application of FES locomotion in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ababas JJ, Chizeck HJ (1995) Neural networks for control of function neuromuscular stimulation systems: computer simulation study. IEEE Trans Biomed Eng 4(11):1117–1127

    Article  Google Scholar 

  • Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390

    Article  PubMed  CAS  Google Scholar 

  • Arsenio AM (2000) On stability and error bounds of describing functions for oscillatory control of movements. In: IEEE international conference on intelligent robots and systems

  • Campa G, Fravolini FL, Napolitano M (2002) A library of adaptive neural network for control purpose. In: Proceedings of the IEEE international symposium on computer aided control system design, Glasgow, September 2002, pp 115–120

  • Chang GC, Luh JJ, Liao GD, Lai JS, Cheng CK, Kuo BL, Kuo TS (1997) A neuro-control system for the knee joint position control with quadriceps stimulation. IEEE Trans Rehabil Eng 5(1):2–11

    Article  PubMed  CAS  Google Scholar 

  • Chizeck HJ (1992) Adaptive and nonlinear control methods for neural prostheses. In: Neural prostheses: replacing motor function after disease or disability. Oxford University Press, Oxford, pp 298–328

  • Cohen AH (1992) The role of heterarchical control in the revolution of central pattern generators. Brain Behav Evol 40:112–124

    PubMed  CAS  Google Scholar 

  • Davidson PR, Jones RD, Andreae JH, Sirisena HS (2002) Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach. IEEE Trans Rehabil Eng 49(11):2–11

    Google Scholar 

  • Davoodi R, Andrews BJ (1998) Computer simulation of FES standing up in paraplegia: a self-adaptive fuzzy controller with reinforcement learning. IEEE Trans Rehabil Eng 6(2):151–161

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 228:100–106

    Article  Google Scholar 

  • Dou H, Tan KK, Lee TH, Zhou Z (1999) Iterative learning feedback control of human limbs via functional electrical stimulation. Control Eng Pract 7:315–325

    Article  Google Scholar 

  • Edrich T, Riener R, Quintern J (2000) Analysis of passive elastic joint moments in paraplegics. IEEE Trans Biomed Eng 47:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Ferrarin M, Palazzo F, Riener R, Quintern J (2001) Model-based control of FES-induced single joint movements. IEEE Trans Neural Syst Rehabil Eng 9:245–257

    Article  PubMed  CAS  Google Scholar 

  • Grasso R, Zago M, Lacquaniti F (2000) Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. J Neurophysiol 83:288–300

    PubMed  CAS  Google Scholar 

  • Hatwell MS, Oderkerk BJ, Sacher CA, Inbar GF (1991) The development of a model reference adaptive controller to control the knee joint of paraplegics. IEEE Trans Autom Control Eng 36(6):683–691

    Article  Google Scholar 

  • He J, Maltenfort MG, Wang Q, Hamm TM (2001) Learning from biological system: modeling neural control. IEEE Control Syst Mag 21(4):55–69

    Article  Google Scholar 

  • Hunt KJ, Jaime R, Gollee H (2001) Robust control of electrically-stimulated muscle using polynomial H-infinity design. Control Eng Pract 9(3):313–328

    Article  Google Scholar 

  • Ishiguro1 A, Fujii A, Hotz PE (2003) Neuromodulated control of bipedal using a polymorphic CPG circuit. Adapt Behav 11(1):7–18

    Article  Google Scholar 

  • Ivashkoa DG, Prilutskyb BI, Markina SN, Chapinc JK, Rybak IA (2003) Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52–54:621–629

    Article  Google Scholar 

  • Jezernik S, Wassink RGV, Keller T (2004) Sliding mode closed-loop control of FES: controlling the shank movement. IEEE Trans Biomed Eng 51(2):263–272

    Article  PubMed  Google Scholar 

  • Jonic S, Jankovic T, Gajic V, Popovic D (1999) Three machine learning techniques for automatic determination of rules to control locomotion. IEEE Trans Biomed Eng 46:300–310

    Article  PubMed  CAS  Google Scholar 

  • Kralj A, Bajd T (1989) Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury. CRC, Baca Raton

    Google Scholar 

  • Lewis MA, Ralph EC, Hartmann MJ, Xu ZR, Cohen AH (2003) An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation. Biol Cybern 88:137–151

    Article  PubMed  Google Scholar 

  • Lu Y, Sundararajan N, Saratchandran P (1998) Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Trans Neural Netw 9:308–318

    Article  Google Scholar 

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Curr Biol 11(23):986–996

    Article  Google Scholar 

  • Matjacic Z, Bajd T (1998) Arm-free paraplegic standing. Part I: Control model synthesis and simulation. IEEE Trans Rehabil Eng 6(2):125–138

    Article  PubMed  CAS  Google Scholar 

  • Moe JH, Post HW (1962) Functional electrical stimulation for ambulation in hemiplegia. Lancet 82:285–288

    CAS  Google Scholar 

  • Neptune PR, Wright IC, vad den Bogert AJ (2000) A method for numerical simulation of single limb ground contact events: application to heel-toe running. Comp Methods Biomech Biomed Eng 3(2):321–334

    Google Scholar 

  • Neptune PR, Kautz SA, Zajac FE (2001) Contribution of the individual ankle planar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398

    Article  PubMed  CAS  Google Scholar 

  • Ogihara N, Yamazaki N (2001) Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol Cybern 84:1–11

    Article  PubMed  CAS  Google Scholar 

  • Pandy MG (2000) Computer modelling and simulation of human movement. Annu Rev Biomed Eng 3:245–273

    Article  Google Scholar 

  • Paul C (2003) Bilateral decoupling in the neural control of biped locomotion. In: Proceedings of the 2nd international symposium on adaptive motion of animals and machines, Kyoto, Japan

  • Popovic D, Stein RB, Oguztoreli MN, Lebiedowska M, Jonic S (1999) Optimal control of walking with functional electrical stimulation: a computer simulation study. IEEE Trans Rehabil Eng 7:69–79

    Article  PubMed  CAS  Google Scholar 

  • Previdi F, Schauer T, Savaresi SM, Hunt KJ (2004) Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans Control Syst Technol 12:176–182

    Article  Google Scholar 

  • Riener R, Fuhr T (1998) Patient-driven control of FES-supported standing up: a simulation study. IEEE Trans Rehabil Eng 6(2):113–124

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan M, Ruina A (2006) Computer optimization of a minimal biped model discovers walking and running. Nature 439:72–75

    Article  PubMed  CAS  Google Scholar 

  • Stites EC, Abbas JJ (2000) Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation. IEEE Trans Biomed Eng 47(9):1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion I, II. Biol Cybern 73:97–121

    PubMed  CAS  Google Scholar 

  • Ting LH, Kautz SA, Brown DA, Zajac FE (2000) Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling. J Neurophysiol 83: 3351–3365

    PubMed  CAS  Google Scholar 

  • Tong KY, Granat MH (1999) Gait control system for functional electrical stimulation using neural networks. Med Biol Eng Comput 37(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Towhidkhah F (1996) Model predictive impedence control: a model for joint movement control. PhD thesis, University of Saskatchewan, Canada

  • Wang W, Slotine JE (2004) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92(1):38–53

    Article  PubMed  Google Scholar 

  • Winter DA (2005) Biomechanics and Motor Control of Human Movement, 3rd edn. Wiley, Singapore (in press)

    Google Scholar 

  • Williamson MM (1998) Neural control of rhythmic arm movements. Neural Netw 11:1379–1394

    Article  PubMed  Google Scholar 

  • Yakovenko S, Gritsenko V, Prochazka A (2004) Contribution of stretch reflexes to locomotor control: a modeling study. Biol Cybern 90:146–155

    Article  PubMed  CAS  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, model, scaling, and application to biomechanics and motor control. CRC Crit Rev Biomed Eng 17:359–411

    CAS  Google Scholar 

  • Zajac FE, Neptune RR, Kautz SA (2003) Biomechanics and coordination of human walking. Part II: Lessons from dynamical simulations and clinical implications. Gait Posture 17:1–17

    Article  PubMed  Google Scholar 

  • Zehr EP, Duysens J (2004) Regulation of arm and leg movement during human locomotion. Neuroscientist 10(4):347–361

    Article  PubMed  Google Scholar 

  • Zhang DG, Zhu KY (2004) Simulation study of FES-assisted standing up with neural network control. In: Proceedings of the 26th IEEE EMBS international conference, San Francisco, September 2004

  • Zhang DG, Zhu KY, Zheng H (2004) Model the leg cycling movements with neural oscillator. In: Proceedings of the IEEE international conference on systems, man and cybernetics, Hague, October 2004, vol 1, pp 740–744

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Zhu, K. Modeling biological motor control for human locomotion with functional electrical stimulation. Biol Cybern 96, 79–97 (2007). https://doi.org/10.1007/s00422-006-0107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0107-3

Keywords

Navigation