Skip to main content
Log in

How do neural connectivity and time delays influence bimanual coordination?

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Multilevel crosstalk as a neural basis for motor control has been widely discussed in the literature. Since no natural process is instantaneous, any crosstalk model should incorporate time delays, which are known to induce temporal coupling between functional elements and stabilize or destabilize a particular mode of coordination. In this article, we systematically study the dynamics of rhythmic bimanual coordination under the influence of varying connection topology as realized by callosal fibers, cortico-thalamic projections, and crossing peripheral fibers. Such connectivity contributes to various degrees of neural crosstalk between the effectors which we continuously parameterize in a mathematical model. We identify the stability regimes of bimanual coordination as a function of the degree of neural crosstalk, movement amplitude and the time delays involved due to signal processing. Prominent examples include explanations of the decreased stability of the antiphase mode of coordination in split brain patients and the role of coupling in mediating bimanual coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baraldi P, Porro CA, Serafini M, Pagnoni G, Murari C, Corazza R, Nichelli P (1999) Bilateral representation of sequential finger movements in human cortical areas. Neurosci Lett 269:95–98

    Article  PubMed  CAS  Google Scholar 

  • Bernstein N (1967) The coordination and regulation of movements. Pergamon Press, Oxford

    Google Scholar 

  • Bressler S, Kelso JAS (2001) Cortical coordination dynamics. Trends Cogn Sci 5:26–36

    Article  PubMed  Google Scholar 

  • Brinkman J, Kuypers HGJM (1972) Splitbrain monkeys: cerebral control of ipsilateral and contralateral arm, hand and finger movements. Science 176:536–538

    Article  PubMed  CAS  Google Scholar 

  • Brown WS, Jeeves MA, Dietrich R, Burnison DS (1999) Bilateral field advantage and evoked potential interhemispheric transmission in commissurotomy and callosal agenesis. Neuropsychologica 37:1165–1180

    Article  CAS  Google Scholar 

  • Byblow WD, Carson RG, Goodman D (1994) Expressions of assymetries and anchoring in bimanual coordination. Hum Mov Sci 13:3–28

    Article  Google Scholar 

  • Cardoso de Oliveira S (2002) The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models. Acta Psychol 110:139–159

    Article  Google Scholar 

  • Cardoso de Oliveira S, Gribova A, Donchin O, Bergman H, Vaadia E (2001) Neural interactions between motor cortical hemispheres during bimanual and unimanual arm movements. Eur J Neurosci 14:1881–1896

    Article  CAS  Google Scholar 

  • Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Rev 49(3):641–662

    Article  PubMed  CAS  Google Scholar 

  • Carson RG, Riek S, Smethurst CJ, Parraga JF, Byblow WD (2000) Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Exp Brain Res 131(2):196–214

    Article  PubMed  CAS  Google Scholar 

  • Cattaert D, Semjen A, Summers J (1999) Simulating a neural cross-talk model for between-hand interference during bimanual circle drawing. Biol Cybern 81:343–358

    Article  PubMed  CAS  Google Scholar 

  • Cheyne D, Endo H, Takeda T, Weinberg H (1997) Sensory feedback contributes to early movement-evoked fields during voluntary finger movements in humans. Brain Res 771(2):196–202

    Article  PubMed  CAS  Google Scholar 

  • Clarke JM, Halgren E, Chauvel P (1999) Intracranial ERP recordings during a lateralized visual oddball task: II. Temporal, parietal and frontal recordings. Electroencephalogr Clin Neurophysiol 110:1226–1244

    CAS  Google Scholar 

  • Clarke JM, Zaidel E (1989) Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes. Brain 112:849–870

    Article  PubMed  Google Scholar 

  • Daffertshofer A, Peper CE, Beek PJ (2005) Stabilization of bimanual coordination due to active interhemispheric inhibition: a dynamical account. Biol Cybern 92:101–109

    Article  Google Scholar 

  • Datko R (1978) A procedure for determination of the exponential stability of certain differential-difference equations. Q Appl Math 36:279–292

    Google Scholar 

  • Debaere F, Swinnen S, Beatse E, Sunaert S, Hecke PV, Duysens J (2001) Brain areas involved in interlimb coordination: a distributed network. Neuroimage 14:947–958

    Article  PubMed  CAS  Google Scholar 

  • Franz EA, Eliassen JC, Ivry R, Gazzaniga MS (1996) Dissociation of spatial and temporal coupling in the bimanual movements of callosotomy patients. Psychol Sci 7:306–310

    Article  Google Scholar 

  • Friston K, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Fuchs A, Jirsa VK (2000) The HKB model revisited: how varying the degree of symmetry controls dynamics. Hum Mov Sci 19:425–449

    Article  Google Scholar 

  • Fuchs A, Jirsa VK, Kelso JAS (2000) Issues for the coordination of human brain activity and motor behavior. Neuroimage 11:375–377

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB, Massey JT (1989) Mental rotation of the neuronal population vector. Science 243:234–236

    Article  PubMed  CAS  Google Scholar 

  • Gerloff C, Andres FG (2002) Bimanual coordination and interhemispheric interaction. Acta Psychol (Amst) 110(2–3):161–86

    Article  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1997) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 385:157–161

    Article  Google Scholar 

  • Grossberg S (1977) Pattern formation by the global limits of a nonlinear competitive interaction in n dimensions. J Math Biol 4(3):237–256

    Article  PubMed  CAS  Google Scholar 

  • Grossberg S, Pribe C, Cohen MA (1997) Neural control of interlimb oscillations 1 Human bimanual coordination. Biol Cybern 77:131–140

    Article  PubMed  CAS  Google Scholar 

  • Haken H (1983) Synergetics: an introduction Springer Series in Synergetics, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model for phase transitions of human hand movement. Biol Cybern 51:347–356

    Article  PubMed  CAS  Google Scholar 

  • Hale J, Lunel S (1993) Introduction to functional differential equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Halgren E (2004) How can intracranial recordings assist MEG source localization? Neurol Clin Neurophysiol, BioMag2004

  • Jantzen KJ, Steinberg G, Kelso JAS (2004) Brain networks underlying human timing behavior. Proc Natl Acad Sci USA 101:6815–6820

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK (2004) Information processing in brain and behavior displayed in large-scale topographies such as EEG and MEG. Int J Bifurcat Chaos 14:679–692

    Article  Google Scholar 

  • Jirsa VK, Ding M (2004) Will a large complex system with time delays be stable?. Phys Rev Lett 93:070602:1–4

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioural dynamics: bimanual coordination. Neural Comput 10:2019–2045

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Haken H (1996) Field theory of electromagnetic brain activity. Phys Rev Lett 77:960–963

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys D 99:503–526

    Article  Google Scholar 

  • Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2002) Spatiotemporal forward solution of the EEG and MEG using network modelling. IEEE Trans Med Imaging 21:493–504

    Article  PubMed  Google Scholar 

  • Jirsa VK, Kelso JAS (2003) Integration and segregation of perceptual and motor behavior. In: Jirsa VK, Kelso JAS (eds) Coordination dynamics: issues and trends. Springer, Berlin Heidelberg New York, pp 243–259

    Google Scholar 

  • Jirsa VK, Kelso JAS (2005) Excitator as the minimal model for discrete and rhythmic movement genration. J Motor Behav 37:35–51

    Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Hum Percept Perform 13(2):178–192

    Article  PubMed  CAS  Google Scholar 

  • Kelso JA, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392(6678): 814–818

    Article  PubMed  CAS  Google Scholar 

  • Kelso JA, Holt KG, Rubin P, Kugler PN (1981) Patterns of human interlimb coordination emerge from the properties of non-linear, limit cycle oscillatory processes: theory and data. J Motor Behav 13(4):226–261

    CAS  Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychon Soc 18(63)

  • Kelso JAS (1995) Dynamic patterns: the self-organization of brain and behaviour, 1st edn. MIT Press

  • Kelso JAS, Holt KG, Turvey MT, Kugler PN (1980) Tutorials in motor behaviour, chapter Coordinative structures as dissipative structures: II Empirical lines of convergence. North Holland, Amsterdam

    Google Scholar 

  • Kennerley SW, Diedrichsen J, Hazeltine E, Semjen A, Ivry R (2002) Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nat Neurosci 5:376–381

    Article  PubMed  CAS  Google Scholar 

  • Kugler PN, Kelso JAS, Turvey MT (1980) Tutorials in motor behaviour, chapter on the concept of coordinative structures as dissipative structures: I Theoretical lines of convergence. North Holland, Amsterdam

    Google Scholar 

  • Lee TD, Almeida QJ, Chua R (2002) Spatial constraints in bimanual coordination: influences of effector orientation. Exp Brain Res 146(2):205–212

    Article  PubMed  Google Scholar 

  • Liepmann H (1920) Apraxie. Real-Encyclopedia der Gesamten HelkundeErgbnisse der Gesamten Medizin, vol 1. Urban and schwarzenberg edition

  • Lim KO, Hedehus M, Moseley M, de Crespigny A, Sullivan EV, Pfefferbaum A (1999) Compromised white matter tract integrity in schizophrenia inferred from diffusion tensor imaging. Arch Gen Psychiatry 56(4):367–374

    Article  PubMed  CAS  Google Scholar 

  • MacDonald N (1989) Biological delay systems: linear stability analysis Cambridge studies in mathematical biology, vol 8. Cambridge University Press, Cambridge

    Google Scholar 

  • Marzi CA, Bisiacchi P, Nicoletti R (1991) Is interhemispheric transfer of visuomotor information asymmetric? Evidence from a meta-analysis. Neuropsychologica 29:1163–1177

    Article  CAS  Google Scholar 

  • McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2(2):175–182

    Article  PubMed  Google Scholar 

  • van Mourik AM, Daffertshofer A, Beek PJ (2006) Deterministic and stochastic features of rhythmic human movement. Biol Cybern 94(3):233–244

    Article  PubMed  Google Scholar 

  • Nagashino H, Kelso JAS (1992) Phase transitions in oscillatory neural networks. Sci Artif Neural Netw Int Soc Opt Eng 1710:278–297

    Google Scholar 

  • Nunez PL (1974) The brain wave equation: a model for EEG. Math Biosci 21:279–297

    Article  Google Scholar 

  • Penny W, Ghahramani Z, Friston KJ (2005) Bilinear dynamical systems. Philos Trans R Soc B Biol Sci 360:983–993

    Article  CAS  Google Scholar 

  • Peper CE, Beek PJ (1999) Modeling rhythmic interlimb coordination: the roles of movement amplitudes and time delays. Hum Mov Sci 18:263–280

    Article  Google Scholar 

  • Robinson PA, Rennie CA, Wright JJ (1997) Propagation and stability of waves of electrical activity in the cerebral cortex. Phys Rev E 56:826–840

    Article  CAS  Google Scholar 

  • Rokni U, Steinberg O, Vaadia E, Sompolinsky H (2003) Cortical representation of bimanual movements. J Neurosci 23:11577–11586

    PubMed  CAS  Google Scholar 

  • Rouiller EM, Tanne J, Moret V, Bossaoud D (1999) Origins of thalamic input to the primary, premotor and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409:131–152

    Article  PubMed  CAS  Google Scholar 

  • Roxin A, Brunel N, Hansel D (2005) Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. Phys Rev Lett 94(23):238103

    Article  PubMed  CAS  Google Scholar 

  • Sampaio R, Truwit C (2001) Myelination in the developing human brain. In: Nelson C, Luciana M (eds) Handbook of developmental cognitive neuroscience. Bradford Books

  • Schmidt R (1975) A schema theory of discrete motor skill learning. Psychol Rev 86:225–260

    Article  Google Scholar 

  • Schmidt RC, Carello C, Tuvery MT (1990) Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J Exp Psychol Hum Percept Perform 16:227–247

    Article  PubMed  CAS  Google Scholar 

  • Schmitz D, Schuchmann S, Fisahn A, Draguhn A, Buhl EH, Petrasch-Parwez E, Dermietzel R, Heinemann U, Traub RD (2001) Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron 31(5):831–840

    Article  PubMed  CAS  Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1519

    Article  PubMed  Google Scholar 

  • Shampine L, Thompson S (2001) Solving DDEs in MATLAB. Appl Numer Math 37:441–458

    Article  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425

    Article  PubMed  Google Scholar 

  • Swinnen S (2002) Intermanual crosstalk: from behavioural models to neural-network interactions. Nat Neurosci 3:350–361

    CAS  Google Scholar 

  • Tass P (1999) Phase resetting in medicine and biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Temprado JJ, Zanone PG, Monno A, Laurent M (1999) Attentional load associated with performing and stabilizing preferred bimanual patterns. J Exp Psychol Hum Percept Perform 25:1579–1594

    Article  Google Scholar 

  • Thorpe S, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature 381:520–522

    Article  PubMed  CAS  Google Scholar 

  • Tuller B, Kelso JAS (1989) Environmentally specified patterns for normal and split brain subjects. Exp Brain Res 75:306–316

    Article  PubMed  CAS  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  PubMed  CAS  Google Scholar 

  • Wright JJ, Liley DTJ (1995) Simulation of electrocortical waves. Biol Cybern 72:347–356

    PubMed  CAS  Google Scholar 

  • Zanone PG, Kelso JAS (1992) Evolution of behavioral attractors with learning: non equilibrium phase transitions. J Exp Psychol Hum Percept Perform 18:403–421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Jirsa, V.K. How do neural connectivity and time delays influence bimanual coordination?. Biol Cybern 96, 265–278 (2007). https://doi.org/10.1007/s00422-006-0114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0114-4

Keywords

Navigation