Skip to main content
Log in

Dynamic control of the central pattern generator for locomotion

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We show that an ongoing locomotor pattern can be dynamically controlled by applying discrete pulses of electrical stimulation to the central pattern generator (CPG) for locomotion. Data are presented from a pair of experiments on biological (wetware) and electrical (hardware) models of the CPG demonstrating that stimulation causes brief deviations from the CPG’s limit cycle activity. The exact characteristics of the deviation depend strongly on the phase of stimulation. Applications of this work are illustrated by examples showing how locomotion can be controlled by using a feedback loop to monitor CPG activity and applying stimuli at the appropriate times to modulate motor output. Eventually, this approach could lead to development of a neuroprosthetic device for restoring locomotion after paralysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CPG:

Central pattern generator

DAC:

Digital-to-analog converter

HCO:

Half-center oscillator

LCO:

Limit cycle oscillator

LHE:

Left hip extensor

LHF:

Left hip flexor

PCB:

Printed circuit board

PDR:

Phase-dependent response

RHE:

Right hip extensor

RHF:

Right hip flexor

SFA:

Spike-frequency adaptation

ZPM:

Zero-phase marker

References

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319

    Article  Google Scholar 

  • Carhart MR, He J, Herman R, D’Luzansky S, Willis WT (2004) Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehab Eng 12:32–42

    Article  Google Scholar 

  • Cohen AH (1988) Evolution of the vertebrate central pattern generator for locomotion. In: Cohen AH, Rossignol S, Grillner S (eds) Neural control of rhythmic movement in vertebrates. Wiley, New York, pp 129–166

    Google Scholar 

  • Cohen AH, Holmes PJ, Rand RH (1982) The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion. J Math Biol 13:345–369

    Article  CAS  PubMed  Google Scholar 

  • Cohen AH, Wallèn P (1980) The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18

    Article  CAS  PubMed  Google Scholar 

  • Delcomyn F (1980) Neural basis of rhythmic behavior in animals. Science 210(4469):492–498

    Article  CAS  PubMed  Google Scholar 

  • Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol 96:1954–1960

    Article  CAS  PubMed  Google Scholar 

  • Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376

    Article  CAS  PubMed  Google Scholar 

  • Ekeberg O (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69(5):363–374

    Google Scholar 

  • Ekeberg O, Grillner S (1999) Simulations of neuromuscular control in lamprey swimming. Philos Trans R Soc Lond B Biol Sci 354(1385):895–902

    Article  CAS  PubMed  Google Scholar 

  • Fagerstedt P, Ullen F (2001) Lateral turns in the lamprey. I. Patterns of motoneuron activity. J Neurophysiol 86:2246–2256

    CAS  PubMed  Google Scholar 

  • Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA (2003) Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol 33:247–254

    Article  PubMed  Google Scholar 

  • Gerasimenko YP, Makarovskii AN, Nikitin OA (2002) Control of locomotor activity in humans and animals in the absence of supraspinal influences. Neurosci Behav Physiol 32:417–423

    Article  PubMed  Google Scholar 

  • Grandhe S, Abbas JJ, Jung R (1999) Brain-spinal cord interactions stabilize the locomotor rhythm to an external perturbation. Biomed Sci Instrument 35:175–180

    CAS  Google Scholar 

  • Grillner S, Cangiano L, Hu G, Thompson R, Hill R, Wallèn P (2000) The intrinsic function of a motor system — from ion channels to networks and behavior. Brain Res 886(1–2):225–236

    Article  Google Scholar 

  • Grillner S, Ekeberg O, Manira AE, Lansner A, Parker D, Tegner J, Wallèn P (1998) Intrinsic function of a neuronal network - a vertebrate central pattern generator. Brain Res Rev 26 (2—4):184–197

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1979) On the central generation of locomotion in the low spinal cat. Exp Brain Res 34(2):241–261

    Article  CAS  PubMed  Google Scholar 

  • Grillner S, Zangger P (1984) The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion. Acta Physiol Scand 120:393–405

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Kiemel T, Cohen AH (2001) Impact of movement and movement related feedback on the central pattern generator for locomotion in the lamprey. J Exp Biol 204:2361–2370

    CAS  PubMed  Google Scholar 

  • Halbertsma JM (1983) The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiol Scand Suppl 521:1–75

    CAS  PubMed  Google Scholar 

  • Harkema SJ (2001) Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist 7:455–468

    Article  CAS  PubMed  Google Scholar 

  • Hellgren J, Grillner S, Lansner A (1992) Computer simulation of the segmental neural network generating locomotion in lamprey by using populations of network interneurons. Biol Cybern 68(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Herman R, He J, D’Luzansky S, Willis W, Dilli S (2002) Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40:65–68

    Article  CAS  PubMed  Google Scholar 

  • Jilge B, Minassian K, Rattay F, Pinter MM, Gerstenbrand F, Binder H, Dimitrijevic MR (2004) Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res 154(3):308–326

    Article  CAS  PubMed  Google Scholar 

  • Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophysiol 75(3):1074–1086

    CAS  PubMed  Google Scholar 

  • Kiemel T, Gormley KM, Guan L, Williams TL, Cohen AH (2003) Estimating the strength and direction of functional coupling in the lamprey spinal cord. J Comput Neurosci 15(2):233–245

    Article  PubMed  Google Scholar 

  • Lansner A, Kotaleski JH, Grillner S (1998) Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate. Ann New York Acad Sci 860:239–249

    Article  CAS  Google Scholar 

  • Lewis MA, Bekey GA (2002) Gait adaptation in a quadruped robot. Autonomous Robots 12(3):301–312

    Article  Google Scholar 

  • Lewis MA, Tenore F, Etienne-Cummings R (2005) CPG design using inhibitory networks. In: Proceedings of the IEEE international conference on robotics and automation

  • Miller WL, Sigvardt KA (2000) Extent and role of multisegmental coupling in the lamprey spinal locomotor pattern generator. J Neurophysiol 81(1):465–476

    Google Scholar 

  • Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F, Dimitrijevic MR (2004) Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord. Spinal Cord 42: 401–416

    Article  CAS  PubMed  Google Scholar 

  • Saigal R, Renzi C, Mushahwar VK (2004) Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehab Eng 12(4):430–440

    Article  Google Scholar 

  • Strange KD, Hoffer JA (1999) Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking. IEEE Trans Rehab Eng 7(3):289-300

    Article  CAS  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. Biol Cybern 73(2):97–111

    Article  CAS  PubMed  Google Scholar 

  • Taylor D, Holmes P (1998) Simple models for excitable and oscillatory neural networks. J Math Biol 37(5):419–446

    Article  CAS  PubMed  Google Scholar 

  • Tenore F, Etienne-Cummings R, Lewis MA (2004) A programmable array of silicon neurons for the control of legged locomotion. In: Proceedings of the IEEE international symposium on circuits and systems, vol 5, pp V349–V352

  • Vogelstein RJ, Etienne-Cummings R, Thakor NV, Cohen AH (2006) Dynamic control of spinal locomotion circuits. In: Proceedings of the IEEE international symposium on circuits and systems, pp 4349-352

  • Vogelstein RJ, Etienne-Cummings R, Thakor NV, Cohen AH (2006) Phase-dependent effects of spinal cord stimulation on locomotor activity. IEEE Trans Neural Syst Rehab Eng 14(3):257–265

    Article  Google Scholar 

  • Vogelstein RJ, Thakor NV, Etienne-Cummings R, Cohen AH (2005) Electrical stimulation of a spinal central pattern generator for locomotion. In: Proceedings of the 2nd international IEEE EMBS conference on neural engineering, pp 475-78

  • Wadden T, Hellgren J, Lansner A, Grillner S (1997) Intersegmental coordination in the lamprey simulations using a network model without segmental boundaries. Biol Cybern 76(1):1–9

    Article  Google Scholar 

  • Wallèn P, Williams TL (1984) Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol 347:225–239

    PubMed  Google Scholar 

  • Williams TL, Bowtell G, Carling JC, Sigvardt KA, Curtin NA (1995) Interactions between muscle activation, body curvature and the water in the swimming lamprey. Symposia Soc Exp Biol 49:49–59

    CAS  Google Scholar 

  • Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zhaoping L, Lewis A, Scarpetta S (2004) Mathematical analysis and simulations of the neural circuit for locomotion in lampreys. Phys Rev Lett 92(19):1980106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jacob Vogelstein.

Additional information

R. J. Vogelstein and F. Tenore contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogelstein, R.J., Tenore, F., Etienne-Cummings, R. et al. Dynamic control of the central pattern generator for locomotion. Biol Cybern 95, 555–566 (2006). https://doi.org/10.1007/s00422-006-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0119-z

Keywords

Navigation