Skip to main content

Advertisement

Log in

Use of a neural mass model for the analysis of effective connectivity among cortical regions based on high resolution EEG recordings

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this work is to use a neural mass model to assess the effect of various connectivity patterns in cortical electroencephalogram (EEG) power spectral density, and investigate the possibility to derive connectivity circuits from EEG data. To this end, a model of an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each described as in Wendling et al. (Eur J Neurosci 15:1499–1508, 2002). Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. The following main steps have been followed: (1) we analyzed how the power spectral density (PSD) is significantly modified by the kind of coupling hypothesized among the ROIs; (2) with the model, and using an automatic fitting procedure, we looked for a simple connectivity circuit able to reproduce PSD of cortical EEG in three ROIs during a finger-movement task. The estimated parameters represent the strength of connections among the ROIs in the different frequency bands. Cortical EEGs were computed with an inverse propagation algorithm, starting from measurement performed with 96 electrodes on the scalp. The present study suggests that the model can be used as a simulation tool, able to mimic the effect of connectivity on EEG. Moreover, it can be used to look for simple connectivity circuits, able to explain the main features of observed cortical PSD. These results may open new prospectives in the use of neurophysiological models, instead of empirical models, to assess effective connectivity from neuroimaging information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astolfi L, Cincotti F, Mattia D, Salinari S, Babiloni C, Basilisco A, Rossini PM, Ding L, Ni Y, He B, Marciani MG, Babiloni F (2004) Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn Reson Imaging 22:1457–1470

    Article  PubMed  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, Babiloni C, Carducci F, Basilisco A, Rossini PM, Salinari S, Ding L, Ni Y, He B, Babiloni F (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116:920–32

    Article  PubMed  CAS  Google Scholar 

  • Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini PM, Ding L, Ni Y, Cheng J, Christine K, Sweeney J, He B (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 24:118–131

    Article  PubMed  CAS  Google Scholar 

  • Baccalà L, Sameshima K (1998) Direct coherence: a tool for exploring functional interactions among brain structures. In: Nicolelis M (ed) Methods for neural ensemble recordings. CRC, Boca Raton, pp 179–192

    Google Scholar 

  • Baccalà LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84:463–474

    Article  PubMed  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  PubMed  CAS  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20:1743–1755

    Article  PubMed  Google Scholar 

  • David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage. 21: 659–673

    Article  PubMed  Google Scholar 

  • David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. Neuroimage 25:756–770

    Article  PubMed  Google Scholar 

  • Erickson KI, Ringo Ho MH, Colcombe SJ, Kramer AF (2005) A structural equation modeling analysis of attentional control: an event-related fMRI study. Brain Res Cogn Brain Res 22: 349–357

    Article  PubMed  Google Scholar 

  • Freeman WJ (1978) Models of the dynamics of neural populations. Electroencephalogr Clin Neurophysiol 34:9–18

    Google Scholar 

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56: 139–150

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RS (1993) Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13: 5–14

    PubMed  CAS  Google Scholar 

  • Goldberg D(1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Grave de Peralta R, Gonzalez Andino SL (1999) Distributed source models: standard solutions and new developments. In: Uhl C (ed) Analysis of neurophysiological brain functioning. Springer, Heidelberg New York Berlin, pp 176–201

    Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage. 19: 466–470

    Article  PubMed  Google Scholar 

  • Horwitz B, Tagamets MA, McIntosh AR (1999) Neural modeling, functional brain imaging, and cognition. Trends Cogn Sci. 3: 91–98

    Article  PubMed  Google Scholar 

  • Horwitz B, Friston KJ, Taylor JG (2000) Neural modeling and functional brain imaging: an overview. Neural Netw. 13: 829–846

    Article  PubMed  CAS  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357–366

    PubMed  CAS  Google Scholar 

  • Kaminski MJ, Blinowska KJ (1991) A new method of the description of the information flow in the brain structures. Biol Cybern 65: 203–210

    Article  PubMed  CAS  Google Scholar 

  • Kaminski M, Blinowska K, Szelenberger W (1995) Investigation of coherence structure and EEG activity propagation during sleep. Acta Neurobiol Exp (Wars) 55:213–219

    CAS  Google Scholar 

  • Kaminski M, Blinowska K, Szclenberger W (1997) Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalogr Clin Neurophysiol 102:216–227

    Article  PubMed  CAS  Google Scholar 

  • Kaminski M, Ding M, Truccolo WA, Bressler SL (2001) Evaluating causal relations in neural systems: granger causality, transfer function and statistical assessment of significance. Biol Cybern 85: 145–157

    Article  PubMed  CAS  Google Scholar 

  • Korzeniewska A, Manczak M, Kaminski M, Blinowska KJ, Kasicki S (2003) Determination of information flow direction among brain structures by a modified directed transfer function (dDTF) method. J Neurosci Methods 125:195–207

    Article  PubMed  Google Scholar 

  • Lee L, Harrison LM, Mechelli A (2003a) A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage 19:457–465

    Article  PubMed  Google Scholar 

  • Lee L, Harrison LM, Mechelli A (2003b) The functional brain connectivity workshop: report and commentary. Network 14:R1–R15

    Article  PubMed  Google Scholar 

  • Lopes da Silva FH, van RA, Barts P, van HE, Burr W (1976) Models of neuronal populations: the basic mechanisms of rhythmicity. Progr Brain Res 45:281–308

    Article  CAS  Google Scholar 

  • Makarov VA, Panetsos F, de FO (2005) A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. J Neurosci Methods 144:265–279

    PubMed  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Network interactions among limbic cortices, basal forebrain, and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose mapping and covariance structural modeling. J Neurophysiol 72: 1717–1733

    PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Wright JJ, Gordon E, Whitehouse RW (2003) Neurophysical modeling of brain dynamics. Neuropsychopharmacology 28(Suppl 1): S74–S79

    Article  PubMed  Google Scholar 

  • Rowe DL, Robinson PA, Rennie CJ (2004) Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J Theor Biol 231:413–433

    Article  PubMed  Google Scholar 

  • Rowe JB, Stephan KE, Friston K, Frackowiak RS, Passingham RE (2005) The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cereb Cortex 15:85–95

    Article  PubMed  Google Scholar 

  • Saito Y, Harashima H (1981) Tracking of information within multichannel EEG record. In: Yamaguchi N, Fujisawa K (eds) Recent advances in EEG and EMG data processing. Elsevier, Amsterdam, pp 133–146

    Google Scholar 

  • Schillen TB, Konig P (1994) Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol Cybern 70:397–405

    PubMed  CAS  Google Scholar 

  • Tagamets MA, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb Cortex 8:310–320

    Article  PubMed  CAS  Google Scholar 

  • Tagamets MA, Horwitz B (2000) A model of working memory: bridging the gap between electrophysiology and human brain imaging. Neural Netw 13:941–952

    Article  PubMed  CAS  Google Scholar 

  • Uutela K, Hamalainen M, Somersalo E (1999) Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage 10:173–180

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Terman D (1997) Image segmentation based on oscillatory correlation. Neural Comput 9:805–836

    Article  PubMed  CAS  Google Scholar 

  • Welch PD(1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 15:70–73

    Article  Google Scholar 

  • Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83:367–378

    Article  PubMed  CAS  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15:1499–1508

    Article  PubMed  CAS  Google Scholar 

  • Zavaglia M, Astolfi L, Babiloni F, Ursino M (2006) A neural mass model for the simulation of cortical activity estimated from high resolution EEG during cognitive or motor tasks. J Neurosci Methods 157:317–329

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Ursino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ursino, M., Zavaglia, M., Astolfi, L. et al. Use of a neural mass model for the analysis of effective connectivity among cortical regions based on high resolution EEG recordings. Biol Cybern 96, 351–365 (2007). https://doi.org/10.1007/s00422-006-0122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0122-4

Keywords

Navigation