Skip to main content

Advertisement

Log in

A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A computationally developed model of human upright balance control (Jo and Massaquoi on Biol cybern 91:188–202, 2004) has been enhanced to describe biped walking in the sagittal plane. The model incorporates (a) non-linear muscle mechanics having activation level -dependent impedance, (b) scheduled cerebrocerebellar interaction for control of center of mass position and trunk pitch angle, (c) rectangular pulse-like feedforward commands from a brainstem/ spinal pattern generator, and (d) segmental reflex modulation of muscular synergies to refine inter-joint coordination. The model can stand when muscles around the ankle are coactivated. When trigger signals activate, the model transitions from standing still to walking at 1.5 m/s. Simulated natural walking displays none of seven pathological gait features. The model can simulate different walking speeds by tuning the amplitude and frequency in spinal pattern generator. The walking is stable against forward and backward pushes of up to 70 and 75  N, respectively, and with sudden changes in trunk mass of up to 18%. The sensitivity of the model to changes in neural parameters and the predicted behavioral results of simulated neural system lesions are examined. The deficit gait simulations may be useful to support the functional and anatomical correspondences of the model. The model demonstrates that basic human-like walking can be achieved by a hierarchical structure of stabilized-long loop feedback and synergy-mediated feedforward controls. In particular, internal models of body dynamics are not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstrong DM, Edgley SA (1988) Discharges of interpositus and Purkinje cells of the cat cerebellum during locomotion under different conditions. J Physiol 400:425–445

    Google Scholar 

  • Anderson FC, Pandy MG (2001) Dynamic optimization of walking. J Biomech Eng 123:381–390

    Article  PubMed  CAS  Google Scholar 

  • Baxendale RH, Ferrell WR (1981) The effect of knee joint afferent discharge on transmission in flexion reflex pathways in decerebrate cats. J Physiol (Lond) 315:231–242

    CAS  Google Scholar 

  • Bizzi E et al (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements?. Behav Brain Sci. 15:603–613

    Google Scholar 

  • Blaya J, Herr H (2004) Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait. IEEE Trans Neural Sys Rehabil Eng 12(1):24–31

    Article  Google Scholar 

  • Brand RA et al (1986) The sensitivity of muscle force predictions to changes in physiological cross-sectional area. J Biomech 8:589–596

    Article  Google Scholar 

  • Bretzner F, Drew T (2005) Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat. J Neurophysiol 94(1):657–672

    Article  PubMed  Google Scholar 

  • Brooke JD et al (1997) Sensori-sensory afferent conditioning with leg movement: gain control in spinal reflex and ascending paths. Prog Neurobiol 51:393–421

    Article  PubMed  CAS  Google Scholar 

  • Cajigas-González I (2003) Linear control model of the spinal processing of descending neural signals. Master’s Thesis, Elect Eng & Comp Sci, Massachusetts Institute of Technology

  • Calancie B et al (1994) Involuntary stepping after chronic spinal cord injury: Evidence for a central rhythm generator for locomotion in man. Brain 117:1143–1159

    Article  PubMed  Google Scholar 

  • Capaday C et al (1999) Studies on the corticospinal control of human walking: I. Response to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81(1):129–139

    PubMed  CAS  Google Scholar 

  • Cheung VC et al (2005) Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neursci 25(27):6419–34

    Article  CAS  Google Scholar 

  • Christensen LO et al (2000) Cerebral activation during bicycle movements in man. Exp Brain Res 135(1):59–68

    Article  Google Scholar 

  • Collins JJ, Stewart I (1994) A group-theoretic approach to rings of coupled biological oscillators. Biol Cybern 71(2):95–103

    PubMed  CAS  Google Scholar 

  • Collins SH, Ruina A (2005) A bipedal walking robot with efficient and human-like gait. In: Proc IEEE Int Conf Robotics & Automation, Barcelona, Spain.

  • d’Avella A et al (2003) Combination of muscle synergies in natural motor behaviors. Nat Neurosci 6(3):300–308

    Article  PubMed  CAS  Google Scholar 

  • d’Avella A, Bizzi E (2005) Shared and specific muscle synergies in natural motor behaviors. Proc Natl Acad Sci USA 102(8):3076–3081

    Article  PubMed  CAS  Google Scholar 

  • Davis BL, Vaughan CL (1993) Phasive behavior of EMG signals during gait: Use of multivariate statistics. J EMG Kinesiol 3:51–60

    Article  Google Scholar 

  • Della Croce U et al (2001) A refined view of the determinants of gait. Gait Posture 14(2):79–84

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MR et al (1998) Evidence for a spinal central pattern generator in humans. Ann NY Acad Sci 860:360–376

    Article  PubMed  CAS  Google Scholar 

  • Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72(22):33–69

    PubMed  CAS  Google Scholar 

  • Dietz V, Harkema J (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol 96:1954–1960

    Article  PubMed  CAS  Google Scholar 

  • Drew T (1993) Motor cortical activity during voluntary gait modifications in the cat. J Neurophysiol 70(1):179–199

    PubMed  CAS  Google Scholar 

  • Duysens J et al (2000) Loading-regulating mechanisms in gait and posture: comparative aspects. Physiol Rev 80(1):83–133

    PubMed  CAS  Google Scholar 

  • Flash T (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern 57:257–274

    Article  PubMed  CAS  Google Scholar 

  • Fledman AG (1986) Once more on the equilibrium trajectories in multi-joint arm movements. Biol Cybern 57:257–274

    Google Scholar 

  • Freitas S et al (2006) Two kinematic synergies in voluntary whole-body movements during standing. J Neurophysiol 95: 636–645

    Article  PubMed  Google Scholar 

  • Fuglevand AJ, Winter DA (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70(6):2470–2488

    PubMed  CAS  Google Scholar 

  • Fujita K, Sato H (1998) Intrinsic viscoelasticity of ankle joint during standing. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society 20(5):2343–2345

  • Fukuoka Y et al (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robot Res 22(3–4):187–202

    Article  Google Scholar 

  • Gilchrist LA, Winter DA (1997) A multisegment computer simulation of normal human gait. IEEE Trans Rehabil Eng 5(4):290–299

    Article  PubMed  CAS  Google Scholar 

  • Grasso R et al (2004) Distributed plasticity of locomotor pattern generators in spinal cord injured patients. Brain 127(5):1019–1034

    Article  PubMed  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55(2):247–304

    Article  PubMed  CAS  Google Scholar 

  • Hiebert GW, Pearson KG (1999) Contribution of sensory feedback to the generation of extensor activity during walking in the decerebrate cat. J Neurophysiol 81:758–770

    PubMed  CAS  Google Scholar 

  • Hirai K et al (1998) The development of Honda humanoid robot. In: Proc the IEEE Int conf Robotic & Automation, Leuven, Belgium

  • Hofmann A (2006) Control rules for biomimetric human bipedal locomotion based on biomechanical principles. PhD Thesis, Elect Eng & Comp Sci, MIT

  • Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52(5):315–331

    Article  PubMed  CAS  Google Scholar 

  • Inman VT et al (1981) In: Lieberman JC (ed) Human walking. Williams & Wilkins, Balitimore pp. 41–55

  • Ivanenko YP et al (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP et al (2006) Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J Neurophysiol 95:602–618

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Zheng M (2006) Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance. Biol Cybern

  • Jo S, Massaquoi SG (2004) A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol Cybern 91:188–202

    Article  PubMed  Google Scholar 

  • Johansson R et al (1988) Identification of human postural dynamics. IEEE Trans Biomed Eng 35(10):858–869

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER et al (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Katayama M, Kawato M (1993) Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models. Biol Cybern 69:353–362

    PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  • Kimura H et al (2001) Adaptive dynamic walking of a quadruped robot by using neural system model. Advanced robots 15(8):859–876

    Article  Google Scholar 

  • King WT (1927) Observations on the role of the cerebral cortex in the control of the postural reflex. Am J Physiol 80:311–326

    Google Scholar 

  • Knikou M et al (2005) Modulation of flexion reflex induced by hip angle changes in human spinal cord injury. Exp Brain Res 164(4):577–586

    Google Scholar 

  • Kriellaars DJ et al (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71(6):2074–2086

    PubMed  CAS  Google Scholar 

  • Kuo A (1995) An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng 42(1):87–101

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F et al (1999) Motor patterns in walking. News Physiol Sci 14:168–174

    PubMed  Google Scholar 

  • Lacquaniti F, Soechting JF (1986) Simulation studies on the control of posture and movement in a multi-jointed limb. Biol Cybern 54:367–378

    Article  PubMed  CAS  Google Scholar 

  • Lam T, Pearson KG (2001) Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J Neurophysiol 86:1321–1332

    PubMed  CAS  Google Scholar 

  • Loram ID et al (2004) Paradoxical muscle movement in human standing. J Physiol 556.3:683–689

    Article  CAS  Google Scholar 

  • Massaquoi SG (1999) Modelling the function of the cerebellum in scheduled linear servo control of simple horizontal planar arm movements. PhD Thesis, Department of Electrical Engineering and Computer Science, MIT, Cambridge MA

  • Massaquoi SG, Hallett M (2002) Ataxia and other cerebellar syndromes. In: Jankovic J, Tolosa E (eds) Parkinson’s desease and movement disorders. Williams & Wilkins, Baltimore, pp. 523–686

    Google Scholar 

  • Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56:345–353

    Article  PubMed  CAS  Google Scholar 

  • McGeer T (1993) Dynamics and control of bipedal locomotion. J Theor Biol 163(3):277–314

    Article  PubMed  CAS  Google Scholar 

  • Mori S et al (2004) Integration of multiple motor segments for the elaboration of locomotion: role of the fastigial nucleus of the cerebellum. Prog Brain Res 143:341–351

    PubMed  Google Scholar 

  • Mori S et al (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82(1):290–300

    PubMed  CAS  Google Scholar 

  • Mori S et al (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanism in cats. Ann N Y Acad Sci 860:94–105

    Article  PubMed  CAS  Google Scholar 

  • Morton SM, Bastian AJ (2003) Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophyiol 89:1844–1856

    Article  Google Scholar 

  • Morton SM, Bastian AJ (2004) Cerebellar control of balance and locomotion. Neuroscientist 10(3):247–259

    Article  PubMed  Google Scholar 

  • Nathan PW (1994) Effects on movement of surgical incisions into the human spinal cord. Brain 117(Pt2):337–346

    Article  PubMed  Google Scholar 

  • Neptune RR et al (2004) Muscle mechanical work requirements during normal walking: the energetic cost of raising the body’s center-of-mass is significant. J Biomech 37:817–825

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JB (2003) How we walk: central control of muscle activity during human walking. Neuroscientist 9(3):195–204

    Article  PubMed  Google Scholar 

  • Ogihara N, Yamazaki N (2001) Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol Cybern 84:1–11

    Article  PubMed  CAS  Google Scholar 

  • Olree KS, Vaughan CL (1995) Fundamental patterns of bilateral muscle activity in human locomotion. Biol Cybern 73:409–414

    PubMed  CAS  Google Scholar 

  • Osborn CE, Poppele RE (1992) Parallel distributed network characteristics of the DSCT. J Neurophysiol 68(4):1100–1112

    PubMed  CAS  Google Scholar 

  • Pandy MG, Berme N (1988) A numerical method for simulation the dynamics of human walking. J Biomech 21(12):1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Patla AE et al (1985) Model of a pattern generator for locomotion in mammals. Am J Physiol 248:R484–494

    PubMed  CAS  Google Scholar 

  • Perry J (1992) Gait analysis: normal and pathological function. McGraw-Hill, New York

    Google Scholar 

  • Peterka R (2003) Simplifying the complexities of maintaining . IEEE Eng Med Bio March (April):63–68

  • Peterson NT et al (1998) The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol (Lond) 513(Pt 2):599–610

    Article  Google Scholar 

  • Porter R, Lemon R (1993) Corticospinal function and voluntary movement. Oxford University Press, New York

    Google Scholar 

  • Prentice SD, Drew T (2001) Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J Neurophysiol 85(2):679–698

    PubMed  CAS  Google Scholar 

  • Ropper A, Brown RH (2005) Adams & Victor’s principles of neurology. 8th edn. McGraw Hill Professional

  • Rossignol S et al (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Rudomin P, Schmidt RF (1999) Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129(1):1–37

    Article  PubMed  CAS  Google Scholar 

  • Saunders JB et al (1953) The major determinants in normal and pathological gait. J Bone & Joint Surgery 35A:543–558

    Google Scholar 

  • Shik ML, Orlovsky GN (1976) Neurophysiology of locomotor automatism. Phsyiol Rev 56(3):465–501

    CAS  Google Scholar 

  • Stein RB (1995) Presynaptic inhibition in humans. Prog in Neurobiol 47:533–544

    Article  CAS  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion I. Emergence of basic gait. Biol Cybern 73:97–111

    PubMed  CAS  Google Scholar 

  • Tresch MC et al (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167

    Google Scholar 

  • Linde RQ (1999) Passive bipedal walking with phasic muscle contraction. Biol Cybern 81:227–237

    Article  PubMed  Google Scholar 

  • Vukobratovic M et al (1990) Scientific fundamentals of robotics 7. Biped locomotion:dynamics stability, control and application. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Winter DA (1990) Biomechanics and motor control of human movement 2nd edn. Wiley, New York

    Google Scholar 

  • Winter DA (1991) The biomechanics and motor control of human gait: normal, elderly and pathological. Waterloo Biomechanics Press, Waterloo

    Google Scholar 

  • Winter DA (1995) Human balance and posture control during standing and walking. Gait & Posture 3:193–214

    Article  Google Scholar 

  • Winters JM (1995) How detailed should muscle models be to understand multi-joint movement coordination?. Hum Mov Sci 14:401–442

    Article  Google Scholar 

  • Winters JM, Stark L (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 32(10):820–839

    Google Scholar 

  • Yang JF et al (2005) Split-belt treadmill stepping in infants suggests autonomous pattern generators for the left and right leg in humans. J Neurosci 25(29):6869–6876

    Article  PubMed  CAS  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Rev Biomed Eng 17(4):359–411

    CAS  Google Scholar 

  • Zehr EP, Stein RB (1999) What functions do reflexes serve during human locomotion? Prog in Neurobiol 58:185–205

    Article  CAS  Google Scholar 

  • Zijlstra W et al (1998) Voluntary and involuntary adaptation of gait in Parkinson’s disease. Gait & Posture 7(1):53–63

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, S., Massaquoi, S.G. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Biol Cybern 96, 279–307 (2007). https://doi.org/10.1007/s00422-006-0126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0126-0

Keywords

Navigation