Skip to main content
Log in

Spatial symmetries in vestibular projections to the uvula-nodulus

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The discharge of secondary vestibular neurons relays the activity of the vestibular endorgans, occasioned by movements in three-dimensional physical space. At a slightly higher level of analysis, the discharge of each secondary vestibular neuron participates in a multifiber projection or pathway from primary afferents via the secondary neurons to another neuronal population. The logical organization of this projection determines whether characteristics of physical space are retained or lost.

The logical structure of physical space is standardly expressed in terms of the mathematics of group theory. The logical organization of a projection can be compared to that of physical space by evaluating its symmetry group. The direct projection from the semicircular canal nerves via the vestibular nuclei to neck motor neurons has a full three-dimensional symmetry group, allowing it to maintain a three-dimensional coordinate frame. However, a projection may embed only a subgroup of the symmetry group of physical space, which incompletely mirrors the properties of physical space. The major visual and vestibular projections in the rabbit via the inferior olive to the uvula-nodulus carry three degrees of freedom—rotations about one vertical and two horizontal axes—but do not have full three dimensional symmetry. Instead, the vestibulo-olivo-nodular projection has symmetries corresponding to a product of two-dimensional vestibular and one-dimensional optokinetic spaces. This combination of projection symmetries provides the foundation for distinguishing horizontal from vertical rotations within a three dimensional space.

In this study, we evaluate the symmetry group given by the physiological organization of the vestibulo-olivo-nodular projection. Although it acts on the same sets of elements and mirrors the rotations that occur in physical space, the physiological transformation group is distinct from the spatial group. We identify symmetries as products of physiological and spatial transformations. The symmetry group shapes the information the projection conveys to the uvula-nodulus; this shaping may depend on a physiological choice of generators, in the same way that function depends on the physiological choice of coordinates. We discuss the implications of the symmetry group for uvula-nodulus function, evolution, and functions of the vestibular system in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley K, Baker R, Simpson JI (1975) Afferents to the vestibulo-cerebellum and the origin of the visual climbing fibers in the rabbit. Brain Res 98(3):582–589

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJM (1994) The cerebellar nodulus and ventral uvula control the torsional vestibulo-ocular reflex. J Neurophysiol 72(3):1443–1447

    PubMed  CAS  Google Scholar 

  • Angelaki DE, Hess BJM (1995a) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73:1729–1751

    CAS  Google Scholar 

  • Angelaki DE, Hess BJM (1995b) Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73(4):1716–1720

    CAS  Google Scholar 

  • Artin M (1991) Algebra. Prentice-Hall, New Jersey

    Google Scholar 

  • Bach-y-Rita P (2003) Late post-acute neurologic rehabilitation: neuroscience, engineering, and clinical programs. Arch Phys Med Rehab 84:1100–1108

    Article  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541

    Article  PubMed  Google Scholar 

  • Barmack NH (2006) Inferior olive and oculomotor system. Prog Brain Res 151:269–291

    Google Scholar 

  • Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74(6):2573–2589

    PubMed  CAS  Google Scholar 

  • Barmack NH, Yakhnitsa V (2000) Vestibular signals in the parasolitary nucleus. J Neurophysiol 83:3559–3569

    PubMed  CAS  Google Scholar 

  • Barmack NH, Fredette BJ, Mugnaini E (1998) The parasolitary nucleus: a source of GABAergic vestibular information in the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Errico P, Ferraresi A, Fushiki H, Pettorossi VE, Yakhnitsa V (2002) Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits. J Neurophysiol 87:962–975

    PubMed  CAS  Google Scholar 

  • Bizzi E, Mussa-Ivaldi FA, Giszter SF (1991) Computations underlying the execution of movement: a biological perspective. Science 253(5017):287–291

    Article  PubMed  CAS  Google Scholar 

  • Black FO, Wood S, Bach-y-Rita P, Danilov Y, Tyler M, Stallings V (2005) Electrotactile sensory supplementation of gravitoinertial references to optimize sensorimotor recovery of postural stability in bilateral vestibular loss subjects. Assoc Res Otolaryngol Abstract 1090, Session D16

  • Braitenberg V (1984) Vehicles. The MIT Press, Cambridge

    Google Scholar 

  • Burke RE (1999) The use of state-dependent modulation of spinal reflexes as a tool to investigate the organization of spinal interneurons. Exp Brain Res 128(3):263–277

    Article  PubMed  CAS  Google Scholar 

  • Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York

    Google Scholar 

  • Cohen B, Dai M, Raphan T (2003) The critical role of velocity storage in production of motion sickness. Ann N Y Acad Sci 1004:359–376

    Article  PubMed  Google Scholar 

  • Cohen B, Wearne S, Dai M, Raphan T (1999) Spatial orientation of the angular vestibulo ocular reflex. J Vestib Res 9(3):163–172

    PubMed  CAS  Google Scholar 

  • Cohen B, John P, Yakushin SB, Buettner-Ennever J, Raphan T (2002) The nodulus and uvula: source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann N Y Acad Sci 978:28–45

    Article  PubMed  Google Scholar 

  • Dai M, Kunin M, Raphan T, Cohen B (2003) The relation of motion sickness to the spatial temporal properties of velocity storage. Exp Brain Res 151(2):173–189

    Article  PubMed  Google Scholar 

  • DiZio P, Lackner JR (1986) Perceived orientation, motion, and configuration of the body during viewing of an off-vertical, rotating surface. Percept Psychophys 39(1):39–46

    PubMed  CAS  Google Scholar 

  • Duhamel JR, Bremmer F, BenHamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389(6653):845–848

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53(2):143–156

    Article  PubMed  CAS  Google Scholar 

  • Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083–3094

    PubMed  CAS  Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13:467–491

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1984) The Vestibular System. In: Brookhart JM, Mountcastle VB, Darian-Smith I (eds) Handbook of physiology—the nervous system III. pp 977–1022

  • Golubitsky M, Stewart I (2002) The symmetry perspective: from equilibrium to chaos in phase space and physical space. Birkhauser Verlag, Basel

    Google Scholar 

  • Golubitsky M, Stewart I, Buono P-L, Collins JJ (1998) A modular network for legged locomotion. Physica D 115:56–72

    Article  Google Scholar 

  • Goossens HHLM, van Opstal AJ (1999) Influence of head position on the spatial representation of acoustic targets. J Neurophysiol 81:2720–2736

    PubMed  CAS  Google Scholar 

  • Guitton D, Volle M (1987) Gaze control in humans: eye–head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol 58(3):427– 459

    PubMed  CAS  Google Scholar 

  • Hanes DA (2006) Perceptual centering effects in body orientation. Biol Cybern 9(4):288–299

    Article  Google Scholar 

  • Hanes DA, McCollum G (2006) Cognitive–vestibular interactions: a review of cognitive difficulties of vestibular patients and possible mechanisms (in press)

  • Hasegawa T, Kato I, Harada K, Ikarashi T, Yoshida M, Koike Y (1994) The effect of uvulonodular lesions on horizontal optokinetic nystagmus and optokinetic after-nystagmus in cats. Acta Otolaryngol 511:126–130

    CAS  Google Scholar 

  • Hultborn H (2001) State-dependent modulation of sensory feedback. J Physiol 533(1):5–13

    Article  PubMed  CAS  Google Scholar 

  • Ivanenko YP, Grasso R, Lacquaniti F (1999) Effect of gaze on postural responses to neck proprioceptive and vestibular stimulation in humans. J Physiol 519(1):301–314

    Article  PubMed  CAS  Google Scholar 

  • Igarashi M, Takeda N, Chae S (1992) Uvula-nodulus and gravity direction (A study on vertical optokinetic–oculomotor functions). Acta Astronau 27:25–30

    Article  CAS  Google Scholar 

  • Jankowska E (2001) Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J Physiol 533(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Kleinschmidt A, Thilo KV, Buchel C, Gresty MA, Bronstein AM, Frackowiak RS (2002) Neural correlates of visual–motion perception as object- or self-motion. Neuroimage 16(4):873–882

    Article  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1993) Multisensory, cognitive, and motor influences on human spatial orientation in weightlessness. J Vestib Res 3:361–372

    PubMed  CAS  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Lowenstein O (1971) The labyrinth in fish physiology, vol V. In: Hoar WS, Randall DJ (eds) Sensory systems and electric organs. Academic, New York, pp 207–240

    Google Scholar 

  • Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140(2):223–236

    Article  CAS  Google Scholar 

  • McCollum G, Boyle R (2004) Rotations in a vertebrate setting: evaluation of the symmetry group of the disynaptic canal–neck projection. Biol Cybern 90:203–217

    Article  PubMed  Google Scholar 

  • McCollum G, Holroyd C, Castelfranco AM (1995) Forms of early walking. J Theor Biol 176:373–390

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF (1992) Vector field approximation: a computational paradigm for motor control and learning. Biol Cybern 67:491–500

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Giszter SF, Bizzi E (1994) Linear combinations of primitives in vertebrate motor control. Proc Natil Acad Sci 91:7534–7538

    Article  CAS  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Ando N, Kawasaki T (1994) Input patterns and pathways from six semicircular canals to motoneurons of neck muscles. I. The Multifidus Muscle Group. J Neurophysiol 72:2691–702

    PubMed  CAS  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Kakei S, Izawa Y, Na J (1996) Four convergent patterns of input from the six semicircular canals to motoneurons of different neck muscles in the upper cervical cord. Ann N Y Acad Sci 781:264–275

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Ando N, Yagi J (1997) Input patterns and pathways from six semicircular canals to motoneurons of neck muscles. II. The Longissimus and Semispinalis Muscle Groups. J Neurophysiol 72:2691–2702

    Google Scholar 

  • Simpson JI (1984) The accessory optic system. Ann Revi Neurosci 7:13–14

    Article  CAS  Google Scholar 

  • Snapp-Childs W, Corbetta D (2005) Learning to walk: individual differences and early strategies. J Sport Exerc Psychol 27:S143–S144

    Google Scholar 

  • Soechting JF, Flanders M (1989) Sensorimotor representations for pointing to targets in three-dimensional space. J Neurophysiol 62(2):582–594

    PubMed  CAS  Google Scholar 

  • Soechting JF, Lacquaniti F, Terzuolo CA (1986) Coordination of arm movements in three-dimensional space. Sensorimotor mapping during drawing movement. Neuroscience 17(2):295–311

    CAS  Google Scholar 

  • Solomon D, Cohen B (1994) Stimulation of the nodulus and uvula discharges velocity storage in the vestibulo-ocular reflex. Exp Brain Res 102(1):57–68

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL (1989) The neural encoding of the location of targets for saccadic eye movements. J Exp Biol 146:195–207

    PubMed  CAS  Google Scholar 

  • Stahl JS (2001) Adaptive plasticity of head movement propensity. Exp Brain Res 139:201–208

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Sato H, Zakir M, Kushiro K, Imagawa M, Ogawa Y, Ono S, Meng H, Zhang X, Katsuta M, Isu N, Wilson VJ (2001) Commissural effects in the otolith system. Exp Brain Res 126:421–430

    Article  Google Scholar 

  • Vidal P-P, Graf W, Berthoz A (1986) The orientation of the cervical vertebral column in unrestrained awake animals. Exp Brain Res 61:549–559

    Article  PubMed  CAS  Google Scholar 

  • Voogd J, Barmack NH (2006) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Article  Google Scholar 

  • Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79(5):2690–2715

    PubMed  CAS  Google Scholar 

  • Wiest G, Deecke L, Trattnig S, Mueller C (1999) Abolished tilt suppression of the vestibulo ocular reflex caused by a selective uvulo-nodular lesion. Neurology 52(2):417–419

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Maeda M (1974) Connection between semicircular canals and neck motoneurons in the cat. J Neurophysiol 37:346–357

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas A. Hanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, I.Z., Hanes, D.A., Barmack, N.H. et al. Spatial symmetries in vestibular projections to the uvula-nodulus. Biol Cybern 96, 439–453 (2007). https://doi.org/10.1007/s00422-006-0136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0136-y

Keywords

Navigation