Skip to main content
Log in

Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Persistent neural activity constitutes one neuronal correlate of working memory, the ability to hold and manipulate information across time, a prerequisite for cognition. Yet, the underlying neuronal mechanisms are still elusive. Here, we design a visuo- spatial delayed-response task to identify the relationship between the cue-distractor spatial distance and mnemonic accuracy. Using a shared experimental and computational test protocol, we probe human subjects in computer experiments, and subsequently we evaluate different neural mechanisms underlying persistent activity using an in silico prefrontal network model. Five modes of action of the network were tested: weak or strong synaptic interactions, wide synaptic arborization, cellular bistability and reduced synaptic NMDA component. The five neural mechanisms and the human behavioral data, all exhibited a significant deterioration of the mnemonic accuracy with decreased spatial distance between the distractor and the cue. A subsequent computational analysis revealed that the firing rate and not the neural mechanism per se, accounted for the positive correlation between mnemonic accuracy and spatial distance. Moreover, the computational modeling predicts an inverse correlation between accuracy and distractibility. In conclusion, any pharmacological modulation, pathological condition or memory training paradigm targeting the underlying neural circuitry and altering the net population firing rate during the delay is predicted to determine the amount of influence of a visual distraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, Cambridge

    Google Scholar 

  • Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87

    Article  PubMed  CAS  Google Scholar 

  • Amit DJ (1995) The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18:617–626

    Article  Google Scholar 

  • Amit DJ, Brunel N (1997) Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb Cortex 7:237–252

    Article  PubMed  CAS  Google Scholar 

  • Aura J, Riekkinen P Jr (1999) Blockade of NMDA receptors located at the dorsomedial prefrontal cortex impairs spatial working memory in rats. Neuroreport 10:243–248

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A (1986) Working memory. Oxford University Press, New York

    Google Scholar 

  • Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA 92:3844–3848

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yishai R, Hansel D, Sompolinsky H (1997) Traveling waves and the processing of weakly tuned inputs in a cortical network module. J Comput Neurosci 4:57–77

    Article  PubMed  CAS  Google Scholar 

  • Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13:204–211

    Article  PubMed  CAS  Google Scholar 

  • Brunel N (1996) Hebbian learning of context in recurrent neural networks. Neural Comput 8:1677–1710

    PubMed  CAS  Google Scholar 

  • Compte A, Brunel N, Goldman-Rakic PS, Wang XJ (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10:910–923

    Article  PubMed  CAS  Google Scholar 

  • Compte A, Constantinidis C, Tegnér J, Raghavachari S, Chafee MV, Goldman-Rakic PS, Wang XJ (2003) Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J Neurophysiol 90:3441–3454

    Article  PubMed  Google Scholar 

  • Constantinidis C, Franowicz MN, Goldman-Rakic PS (2001) Coding specificity in cortical microcircuits: a multiple-electrode analysis of primate prefrontal cortex. J Neurosci 21:3646–3655

    PubMed  CAS  Google Scholar 

  • Cornette L, Dupont P, Salmon E, Orban GA (2001) The neural substrate of orientation working memory. J Cogn Neurosci 13:813–828

    Article  PubMed  CAS  Google Scholar 

  • de Fockert JW, Rees G, Frith CD, Lavie N (2001) The role of working memory in visual selective attention. Science 291:1803–1806

    Article  PubMed  CAS  Google Scholar 

  • Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–533

    Article  PubMed  CAS  Google Scholar 

  • Dudkin KN, Kruchinin VK, Chueva IV (1997) Effect of NMDA on the activity of cortical glutaminergic structures in delayed visual differentiation in monkeys. Neurosci Behav Physiol 27:153–158

    Article  PubMed  CAS  Google Scholar 

  • Durstewitz D, Seamans JK, Sejnowski TJ (2000) Dopamine- mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 83:1733–1750

    PubMed  CAS  Google Scholar 

  • Egorov AV, Hamam BN, Fransen E, Hasselmo ME, Alonso AA (2002) Graded persistent activity in entorhinal cortex neurons. Nature 420:173–178

    Article  PubMed  CAS  Google Scholar 

  • Fransen E, Lansner A (1998) A model of cortical associative memory based on a horizontal network of connected columns. Network 9:235–264

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–78

    PubMed  CAS  Google Scholar 

  • Fuster JM (1995) Memory in the cerebral cortex. MIT press, Cambrige

    Google Scholar 

  • Fuster JM (1997) The prefrontal cortex: anatomy, physiology, and neuropsychology of the frontal lobe. Lippincott-Raven, New York

    Google Scholar 

  • Gewaltig MO, Diesmann M, Aertsen A (2001) Propagation of cortical synfire activity: survival probability in single trials and stability in the mean. Neural Netw 14:657–673

    Article  PubMed  CAS  Google Scholar 

  • Goldman MS, Levine JH, Major G, Tank DW, Seung HS (2003) Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb Cortex 13:1185–1195

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology. American Physiology Society, Bethesda, pp 373–417

  • Goldman-Rakic PS (1995) Cellular basis of working memory. Neuron 14:477–485

    Article  PubMed  CAS  Google Scholar 

  • Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB (2001) Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. J Comput Neurosci 11:121–134

    Article  PubMed  CAS  Google Scholar 

  • Haj-Dahmane S, Andrade R (1998) Ionic mechanism of the slow afterdepolarization induced by muscarinic receptor activation in rat prefrontal cortex. J Neurophysiol 80:1197–1210

    PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behaviour. Wiley, New York

    Google Scholar 

  • Hestrin S, Sah P, Nicoll RA (1990) Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5:247–253

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence of NMDA- activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182

    PubMed  CAS  Google Scholar 

  • Kane MJ, Bleckley MK, Conway ARA, Engle RW (2001) A controlled-attention view of working-memory capacity. J Exp Psychol Gen 130:169–183

    Article  PubMed  CAS  Google Scholar 

  • Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlstrom K, Gillberg CG, Forssberg H, Westerberg H (2005) Computerized training of working memory in children with ADHD—a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry 44:177–186

    Article  PubMed  Google Scholar 

  • Koulakov AA, Raghavachari S, Kepecs A, Lisman JE (2002) Model for a robust neural integrator. Nat Neurosci 5:775–782

    Article  PubMed  CAS  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  PubMed  CAS  Google Scholar 

  • Lavie N, Hirst A, de Fockert JW, Viding E (2004) Load theory of selective attention and cognitive control. J Exp Psychol Gen 133:339–354

    Article  PubMed  Google Scholar 

  • Lee RH, Heckman CJ (1998) Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J Neurophysiol 80:583–593

    PubMed  CAS  Google Scholar 

  • Levitt JB, Lewis DA, Yoshioka T, Lund JS (1993) Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 and 46). J Comp Neurol 338:360–376

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, Fellous JM, Wang XJ (1998) A role for NMDA- receptor channels in working memory. Nat Neurosci 1:273–275

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein Y, Sompolinsky H (2003) Temporal integration by calcium dynamics in a model neuron. Nat Neurosci 6:961–967

    Article  PubMed  CAS  Google Scholar 

  • Macoveanu J, Klingberg T, Tegner J (2006) A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141:1611–1618

    Article  PubMed  CAS  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol 500(Pt 2):409–440

    PubMed  CAS  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA (1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54: 782–806

    PubMed  CAS  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  PubMed  CAS  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120(Pt 4):701–722

    Article  PubMed  Google Scholar 

  • Norman DA (1970) Models of human memory. Academic, New York

    Google Scholar 

  • Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7:75–79

    Article  PubMed  CAS  Google Scholar 

  • Olesen PJ, Macoveanu J, Klingberg T (2005) Childhood development of brain activity related to working memory and distractor processing (unpublished)

  • Ploner CJ, Gaymard B, Rivaud S, Agid Y, Pierrot-Deseilligny C (1998) Temporal limits of spatial working memory in humans. Eur J Neurosci 10:794–797

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ, Hager LD, Heron C (1994) Prefrontal cognitive processes working memory and inhibition in the antisaccade task. J Exp Psychol Gen 123:374–393

    Article  Google Scholar 

  • Sakai K, Rowe JB, Passingham RE (2002) Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat Neurosci 5:479–484

    PubMed  CAS  Google Scholar 

  • Salin PA, Prince DA (1996) Electrophysiological mapping of GABAA receptor-mediated inhibition in adult rat somatosensory cortex. J Neurophysiol 75:1589–1600

    PubMed  CAS  Google Scholar 

  • Sandberg A, Tegnér J, Lansner A (2003) A working memory model based on fast Hebbian learning. Network 14:789–802

    Article  PubMed  CAS  Google Scholar 

  • Scherzer CR, Landwehrmeyer GB, Kerner JA, Counihan TJ, Kosinski CM, Standaert DG, Daggett LP, Velicelebi G, Penney JB, Young AB (1998) Expression of N-methyl-D-aspartate receptor subunit mRNAs in the human brain: hippocampus and cortex. J Comp Neurol 390:75–90

    Article  PubMed  CAS  Google Scholar 

  • Schiller J, Schiller Y (2001) NMDA receptor-mediated dendritic spikes and coincident signal amplification. Curr Opin Neurobiol 11:343–348

    Article  PubMed  CAS  Google Scholar 

  • Seung HS (1996) How the brain keeps the eyes still. Proc Natl Acad Sci USA 93:13339–13344

    Article  PubMed  CAS  Google Scholar 

  • Seung HS, Lee DD, Reis BY, Tank DW (2000) Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:259–271

    Article  PubMed  CAS  Google Scholar 

  • Shima K, Tanji J (1998) Involvement of NMDA and non-NMDA receptors in the neuronal responses of the primary motor cortex to input from the supplementary motor area and somatosensory cortex: studies of task-performing monkeys. Jpn J Physiol 48:275–290

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol 482(Pt 2):325–352

    PubMed  CAS  Google Scholar 

  • Tegnér J, Compte A, Wang XJ (2002) The dynamical stability of reverberatory neural circuits. Biol Cybern 87:471–481

    Article  PubMed  Google Scholar 

  • Thomas HB (1968) An information-theoretic model for the serial position effect. Psychol Rev 75:409–420

    Article  PubMed  CAS  Google Scholar 

  • Todd JJ, Marois R (2004) Capacity limit of visual short-term memory in human posterior parietal cortex. Nature 428:751–754

    Article  PubMed  CAS  Google Scholar 

  • Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136

    Article  PubMed  CAS  Google Scholar 

  • Vogel EK, Machizawa MG (2004) Neural activity predicts individual differences in visual working memory capacity. Nature 428:748–751

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587–9603

    PubMed  CAS  Google Scholar 

  • Wang XJ (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:455–463

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Tegnér J, Constantinidis C, Goldman-Rakic PS (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. Proc Natl Acad Sci USA 101:1368–1373

    Article  PubMed  CAS  Google Scholar 

  • White JM, Sparks DL, Stanford TR (1994) Saccades to remembered target locations: an analysis of systematic and variable errors. Vis Res 34:79–92

    Article  PubMed  CAS  Google Scholar 

  • Xiang Z, Huguenard JR, Prince DA (2002) Synaptic inhibition of pyramidal cells evoked by different interneuronal subtypes in layer v of rat visual cortex. J Neurophysiol 88:740–750

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Tegnér.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macoveanu, J., Klingberg, T. & Tegnér, J. Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. Biol Cybern 96, 407–419 (2007). https://doi.org/10.1007/s00422-006-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0139-8

Keywords

Navigation