Skip to main content

Advertisement

Log in

Neuronal identification of acoustic signal periodicity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Acoustic signals transmit information by temporal characteristics and envelope periodicity as well as by their frequency content. Many animals can extract the frequency content of a signal by means of specialized organs such as the cochlea but for the detection and identification of higher-order periodicity, e.g., amplitude modulations, this type of organ is useless. In addition, many animals do not have a cochlea but still depend on a reliable identification of different frequencies in the vast variety of acoustic signals they perceive in their natural environment. Hence, neural mechanisms to decode periodicity information must exist. We present a detailed mathematical analysis of a recurrent and a feedforward model of neuronal periodicity extraction and discuss basic constraints for neuronal circuitry performing such a task in a biological system. Both the recurrent and the feedforward model perform well using neuronal parameters typical for the auditory system. Performance is limited mainly by the temporal precision of the connections between the neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aicher B, Tautz J (1990) Signal transmission through the substrate. J Comp Physiol A 166:345

    Article  Google Scholar 

  • Avendaño C, Deng L, Hermansky H, Gold B (2004) The analysis and representation of speech. In: Greenberg S, Ainsworth W, Popper A, Fay R (eds) Speech processing in the auditory system, chap. 2. Springer, New York, p. 63

    Chapter  Google Scholar 

  • Barth F (1985) Neuroethology of the spider vibration sense. In: Barth F (ed) Neurobiology of arachnids, chap. 11. Springer, New York, p 203

    Google Scholar 

  • Barth F (1998) The vibrational sense of spiders. In: Hoy R, Popper A, Fay R (eds) Comparative hearing: insects, chap. 7. Springer, New York, p 228

    Google Scholar 

  • Barth F, Geethabali (1982) Spider vibration receptors: threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol A 148:175

    Article  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Gustav Fisher, Stuttgart

    Google Scholar 

  • Bleckmann H (1998) Prey identification and prey localization in surface-feeding fish and fishing spiders. In: Atema J, Fay R, Popper A, Tavolga W (eds) Sensory biology of aquatic animals, chap. 24. Springer, New York, p 619

    Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination in the surface-feeding fish Aplocheilus lineatus—a prerequisite for prey localization?. J Comp Physiol A 143:485

    Article  Google Scholar 

  • Bleckmann H, Breithaubt T, Blickhan RJT (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs and crustaceans. J Comp Physiol A 168:749

    PubMed  CAS  Google Scholar 

  • Bleckmann H, Borchard M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174:305

    Article  Google Scholar 

  • Borst M, Langner G, Palm G (2004) A biologically motivated network for phase extraction from complex sounds. Biol Cybern 90:98

    Article  PubMed  Google Scholar 

  • Bregman A (1990) Auditory scene analysis. MIT Press, Cambridge, MA

    Google Scholar 

  • Brownell P (1977) Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197:479

    Article  Google Scholar 

  • Buell T, Hafter E (1991) Combination of binaural information across frequency bands. J Acoust Soc Am 90:1894

    Article  PubMed  CAS  Google Scholar 

  • Burkitt A (2006a) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95:1

    CAS  Google Scholar 

  • Burkitt A (2006b) A review of the integrate-and-fire neuron model: II. Inhomogeneous synaptic input and network properties. Biol Cybern 95:97

    CAS  Google Scholar 

  • Burkitt A, Clark G (2001) Synchronization of the neural response to noise periodic synaptic input. Neural Comp 13:2639

    Article  CAS  Google Scholar 

  • Cariani P (2001) Neural timing nets. Neur Netw 14:737

    Article  CAS  Google Scholar 

  • Cariani P (2003) Recurrent timing nets for auditory speech analysis. Proc Int Joint Conf Neural Netw 2:1575

    Article  Google Scholar 

  • Cherry E (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975

    Article  Google Scholar 

  • Cooke M, Ellis D (2001) The auditory organization of speech and other sources in listeners and computational models. Speech Commun 35:141

    Article  Google Scholar 

  • Coombs S, Görner P, Münz He (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York

    Google Scholar 

  • Culling J, Summerfield Q (1995) Perceptual separation of concurrent speech sounds: absence of across-frequency grouping by common interaural delay. J Acoust Soc Am 98:785

    Article  PubMed  CAS  Google Scholar 

  • Dean I, Harper N, McAlpine D (2005) Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci 8:1684

    Article  PubMed  CAS  Google Scholar 

  • Demany L, Semal C (1988) Dichotic fusion of 2 tones one octave apart: evidence for internal octave templates. J Acoust Soc Am 83:687

    Article  PubMed  CAS  Google Scholar 

  • Deutsch D (1973) Octave generalization of specific interference effects in memory for tonal pitch. Percept Phychophys 13:271

    Google Scholar 

  • Diesmann M, Gewaltig MO, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529

    Article  PubMed  CAS  Google Scholar 

  • Elepfandt A (1986) Wave frequency recognition and absolute pitch for water waves in the clawed frog Xenopus laevis. J Comp Physiol A 158:235

    Article  Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223

    Article  CAS  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Grothe B, Klump G (2000) Temporal processing in sensory systems. Curr Opin Neurobiol 10:467

    Article  PubMed  CAS  Google Scholar 

  • Hergenröder R, Barth F (1983) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol A 152:347

    Article  Google Scholar 

  • Hudspeth A, Corey D (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407

    Article  PubMed  CAS  Google Scholar 

  • Humphreys L (1939) Generalization as a function of method of reinforcement. J Exp Psych 25:361

    Article  Google Scholar 

  • Ingham N, McAlpine D (2004) Spike-frequency adaptation in the inferior colliculus. J Neurophysiol 91:632

    Article  PubMed  Google Scholar 

  • Joris P, Schreiner C, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541

    Article  PubMed  CAS  Google Scholar 

  • Kalmijn A (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay R, Popper A, Tavolga W (eds) Sensory biology of aquatic animals, chap. 4. Springer, New York, p 83

    Google Scholar 

  • Käse R, Bleckmann H (1987) Prey localization by surface ray-tracing: fish track bugs like oceanographers track storms. Experientia 43:290

    Article  PubMed  Google Scholar 

  • Kempter R, Gerstner W, Van Hemmen J, Wagner H (1998a) Extracting oscillations: Neural coincidence detection with noise periodic spike input. Neural Comp 10:1987

    Article  CAS  Google Scholar 

  • Kempter R, Gerstner W, Van Hemmen J (1998b) How the threshold of a neuron determines its capacity for coincidence detection. BioSys 48:105

    Article  CAS  Google Scholar 

  • Krishna B, Semple M (2000) Auditory temporal processing: response to sinusoidally amplitude-moulated tones in the inferior colliculus. J Neurophysiol 84:255

    PubMed  CAS  Google Scholar 

  • Landolfa M, Barth F (1996) Vibrations in the orb web of the spider Nephilia clavipes: Cues for discrimination and orientation. J Comp Physiol A 179:493

    Article  Google Scholar 

  • Lang H (1980) Surface wave discrimination between prey and nonprey by the backswimmer Notonecta glauca L. (Hemiptera, Heteroptera). Beh Ecol Sociobiol 6:233

    Article  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60:115

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner C (1988) Periodicity coding in the inferior colliculus of the cat. i. neuronal mechanisms. J Neurophysiol 60:1799

    PubMed  CAS  Google Scholar 

  • Licklider J (1951) A duplex theory of pitch perception. Experientia 7:128

    Article  PubMed  CAS  Google Scholar 

  • Magal C, Schöller M, Tautz J, Casas J (2000) The role of leaf structure in vibration propagation. J Acoust Soc Am 108:2412

    Article  PubMed  CAS  Google Scholar 

  • Masters W (1984) Vibrations in the orbwebs of Nuctenea sclopetaria (Araneidae). Beh Ecol Sociobiol 15:217

    Article  Google Scholar 

  • Masters W, Markl H, Moffat A (1986) Transmission of vibration in a spider’s web. In: Shear W (ed) Spiders: Webs, Behavior, and Evolution, Chap. 3. Stanford University Press, Stanford, p 49

    Google Scholar 

  • Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102:1811

    Article  PubMed  CAS  Google Scholar 

  • Meddis R, O’Mard L (2006) Virtual pitch in a computational physiological model. J Acoust Soc Am 120:3861

    Article  PubMed  Google Scholar 

  • Megela Simmons A, Ferragamo M (1993) Periodicity extraction in the anuran auditory nerve. J Comp Physiol A 172:57

    Article  Google Scholar 

  • Middleton J, Longtin A, Benda J, Maler L (2006) The cellular basis for parallel neural transmission of a high-frequency stimulus and its low-frequency envelope. Proc Natl Acad Sci USA 103:14596

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154

    Article  PubMed  CAS  Google Scholar 

  • Oertel D (1999) The role of timing in the brain stem auditory nuclei of vertebrates. Ann Rev Physiol 61:497

    Article  CAS  Google Scholar 

  • Rees A, Møller A (1983) Responses of neurons in the inferior colliculus of the rat to am and fm tones. Hear Res 10:301

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Møller A (1987) Stimulus properties influencing the repsonses of inferior colliculus neurons to amplitude-modulated sounds. Hear Res 27:129

    Article  PubMed  CAS  Google Scholar 

  • Rees A, Palmer A (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. J Acoust Soc Am 85:1978

    Article  PubMed  CAS  Google Scholar 

  • Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A 155:121

    Article  Google Scholar 

  • Schreiner C, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823

    PubMed  CAS  Google Scholar 

  • Shannon R, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303

    Article  PubMed  CAS  Google Scholar 

  • Smith R, Zwislocki J (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Marsh J, Greenberg S, Brown W (1978) Human auditory frequency-following responses to a missing fundamental. Science 201:639

    Article  PubMed  CAS  Google Scholar 

  • Smith Z, Delgutte B, Oxenham A (2002) Chimaeric sounds reveal dichotomies in auditory perception. Nature 416:87

    Article  PubMed  CAS  Google Scholar 

  • Speck-Hergenröder J, Barth F (1987) Tuning of vibration sensitive neurons in the central nervous system of a wandering spider, Cupiennius salei Keys. J Comp Physiol A 160:467

    Article  Google Scholar 

  • Trussell L (1999) Synaptic mechanisms for coding timing in auditory neurons. Ann Rev Physiol 61:477

    Article  CAS  Google Scholar 

  • Van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biophysics, vol 4, Neuro-informatics and neural modelling, Chap. 18. Elsevier, Amsterdam, p 771

    Google Scholar 

  • Westerman L, Smith R (1984) Rapid and short-term adaptation in auditory nerve responses. Hear Res 15:249

    Article  PubMed  CAS  Google Scholar 

  • Yost W (1991) Auditory image perception and analysis: The basis for hearing. Hear Res 56:8

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Trussell L (1994) A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72:705

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Friedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedel, P., Bürck, M. & Leo van Hemmen, J. Neuronal identification of acoustic signal periodicity. Biol Cybern 97, 247–260 (2007). https://doi.org/10.1007/s00422-007-0173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0173-1

Keywords

Navigation