Skip to main content

Advertisement

Log in

Disparity estimation through Green’s functions of matching equations

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Binocular disparities arise from positional differences of scene features projected in the two retinae, and constitute the primary sensory cue for stereo vision. Here we introduce a new computational model for disparity estimation, based on the Green’s function of an image matching equation. When filtering a Gabor-function-modulated signal, the considered Green’s function yields a similarly modulated but shifted version of the original signal. Since a Gabor function models the receptive field of a cortical simple cell, the Green’s kernel thus allows the simulation of relative shifts between the cell’s left and right binocular inputs. A measure of the local degree of matching of such shifted inputs can then be introduced which affords disparity estimation in a similar manner to the energy model of the complex cortical cells. We have therefore effectively reformulated, in physiologically plausible terms, an image matching approach to disparity estimation. Our experiments show that the Green’s function method allows the detection of disparities both from random-dot and real-world stereograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299

    PubMed  CAS  Google Scholar 

  • Ahlvers U (2005) Stereobilder Datenbank. http://www.hsu-hh.de/ant/index_pfbUvcu5lULdjkEN.html. Cited 10 October 2006

  • Barnard ST (1986) A stochastic approach to stereo vision. In: Proceedings of the fifth national conference on artificial intelligence. MIT Press, Cambridge, pp 676–680

  • Chen Y, Qiang N (2004) A coarse-to-fine disparity energy model with both phase-shift and position-shift receptive field mechanisms. Neural Comput 16:1545–1577

    Article  PubMed  Google Scholar 

  • CMU-VASC (1997) Carnegie Mellon University Image Database. http://www.cs.cmu.edu/afs/cs/project/vision/vasc/idb/www/ html_permanent//index.html. Cited 10 October 2006

  • Ferreira Jr PE, Torreão JRA, Carvalho PCP (2004) Data-based motion simulation through a Green’s function approach. In: Proceedings of SIBGRAPI/SIACG 2004. IEEE Computer Society, Los Alamitos, pp 193–199 (see http://www.graphics.ufba.br/FAPESB/motion/)

  • Ferreira Jr PE, Torreão JRA, Carvalho PCP, Vieira MB (2007) Motion synthesis through 1D affine matching. Pattern Anal Appl (in press)

  • Fetter AL, Walecka JD (1980) Theoretical mechanics of particles and continua. McGraw-Hill, New York

    Google Scholar 

  • Fleet DJ, Jepson AD, Jenkin MRM (1991) Phase-based disparity measurement. Comput Vis Graphics Image Proc 53(2):198–210

    Google Scholar 

  • Fleet DJ, Wagner H, Heeger D (1996) Neural encoding of binocular disparities: energy models, position shifts and phase shifts. Vision Res 36(12):1839–1857

    Article  PubMed  CAS  Google Scholar 

  • Henkel R (2004) Stereo vision. http://axon.physik.uni-bremen.de/research/stereo/difficult/index.html. Cited 10 October 2006

  • Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  • Hubel DH, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Marcelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am A 70:1297–1300

    CAS  Google Scholar 

  • Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond B 204:301–328

    PubMed  CAS  Google Scholar 

  • Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249:1037–1041

    Article  PubMed  CAS  Google Scholar 

  • Ohzawa I, DeAngelis GC, Freeman RD (1997) Encoding of binocular disparity by complex cells in the cat’s visual cortex. J Neurophysiol 77:2879–2909

    PubMed  CAS  Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity of striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405

    PubMed  CAS  Google Scholar 

  • Pollen DA, Ronner SF (1983) Visual cortical neurons as localized spatial frequency filters. IEEE Trans Syst Man Cyb 13(5):907–916

    Google Scholar 

  • Prazdny K (1985) Detection of binocular disparities. Biol Cybern 52:93–99

    Article  PubMed  CAS  Google Scholar 

  • Qian N (1994) Computing stereo disparity and motion with known binocular cell properties. Neural Comput 6:390–404

    Article  Google Scholar 

  • Qian N, Mikaelian S (2000) Relationship between phase and energy methods for disparity computation. Neural Comput 12:303–316

    Article  Google Scholar 

  • Qian N, Zhu Y (1997) Physiological computation of binocular disparity. Vision Res 37(13):1811–1827

    Article  PubMed  CAS  Google Scholar 

  • Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vision 47(1–3):7–42

    Article  Google Scholar 

  • Stork DG, Wilson HR (1990) Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? J Opt Soc Am A 7:1362–1373

    Article  PubMed  CAS  Google Scholar 

  • Torreão JRA (2001) A Green’s function approach to shape from shading. Pattern Recognit 34:2367–2382

    Article  Google Scholar 

  • Torreão JRA (2003) Geometric-photometric approach to monocular shape estimation. Image Vision Comput 21:1045–1061

    Article  Google Scholar 

  • Torreão JRA, Amaral MS (2006) Efficient, recursively implemented differential operator, with application to edge detection. Pattern Recognit Lett 27(9):987–995

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. A. Torreão.

Additional information

Partially supported by CNPq-Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torreão, J.R.A. Disparity estimation through Green’s functions of matching equations. Biol Cybern 97, 307–316 (2007). https://doi.org/10.1007/s00422-007-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0174-0

Keywords

Navigation