Skip to main content
Log in

Object localization in cluttered acoustical environments

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In nature, sounds from objects of interest arrive at the ears accompanied by sound waves from other actively emitting objects and by reflections off of nearby surfaces. Despite the fact that all of these waveforms sum at the eardrums, humans with normal hearing effortlessly segregate one sound source from another. Our laboratory is investigating the neural basis of this perceptual feat, often called the “cocktail party effect” using the barn owl as an animal model. The barn owl, renowned for its ability to localize sounds and its spatiotopic representation of auditory space, is an established model for spatial hearing. Here, we briefly review the neural basis of sound-localization of a single sound source in an anechoic environment and then generalize the ideas developed therein to cases in which there are multiple, concomitant sound sources and acoustical reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bala AD, Spitzer MW, Takahashi TT (2003) Prediction of auditory spatial acuity from neural images on the owl’s auditory space map. Nature 424: 771–74

    Article  CAS  PubMed  Google Scholar 

  • Bala AD, Spitzer MW, Takahashi TT (2007) Auditory spatial acuity approximates the resolving power of space-specific neurons. PLoS ONE 2: e675

    Article  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing. The psychophysics of human sound localization. MIT, Cambridge

    Google Scholar 

  • Brainard MS, Knudsen EI, Esterly SD (1992) Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91: 1015–027

    Article  CAS  PubMed  Google Scholar 

  • Bronkhorst AW, Houtgast T (1999) Auditory distance perception in rooms. Nature 397: 517–20

    Article  CAS  PubMed  Google Scholar 

  • Burger RM, Pollak GD (2001) Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 21: 4830–843

    CAS  PubMed  Google Scholar 

  • Cherry E (1953) Some experiments on the recognition of speech with one and with two ears. J Acoust Soc Am 25: 975–79

    Article  Google Scholar 

  • Clifton RK, Freyman RL (1997) The precedence effect: beyond echo suppression. In: Gilkey RH, Anderson TR (eds) Binaural and spatial hearing in real and virtual environments. Erlbaum, Mahwah

  • Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97: 585–92

    Article  CAS  PubMed  Google Scholar 

  • duLac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 63: 131–46

    CAS  Google Scholar 

  • Euston DR, Takahashi TT (2002) From spectrum to space: the contribution of level difference cues to spatial receptive fields in the barn owl inferior colliculus. J Neurosci 22: 264–93

    Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J Acoust Soc Am 116: 3075–089

    Article  PubMed  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Batra R, Trahiotis C (1995) Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit. J Neurophysiol 74: 2469–486

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: Auditory nerve to auditory cortex. J Acoust Soc Am 106: 3460–472

    Article  CAS  PubMed  Google Scholar 

  • Freyman RL, Clifton RK, Litovsky RY (1991) Dynamic processes in the precedence effect. J Acoust Soc Am 90: 874–84

    Article  CAS  PubMed  Google Scholar 

  • Haas H (1951) Über den einfluss einesEinfachechos auf die Hörsamkeit von Sprache. Acustica 1:49–8

    Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the “precedence effect–which utilize successive transient stimuli. J Acoust Soc Am 110: 1505–513

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Takahashi TT (1996a) Binaural cross-correlation predicts the responses of neurons in the owl’s auditory space map under conditions simulating summing localization. J Neurosci 16: 4300–309

    CAS  PubMed  Google Scholar 

  • Keller CH, Takahashi TT (1996b) Responses to simulated echoes by neurons in the barn owl’s auditory space map. J Comp Physiol A 178: 499–12

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Takahashi TT (2005) Localization and identification of concurrent sounds in the owl’s auditory space map. J Neurosci 25: 10446–0461

    Article  CAS  PubMed  Google Scholar 

  • Keller CH, Hartung K, Takahashi TT (1998) Head-related transfer functions of the barn owl: measurement and neural responses. Hear Res 118: 13–4

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41: 870–84

    CAS  PubMed  Google Scholar 

  • Knudsen EI, Blasdel GG, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol A 133: 13–1

    Article  Google Scholar 

  • Konishi M (1973a) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107: 775–85

    Article  Google Scholar 

  • Konishi M (1973b) How the owl tracks its prey. Am Sci 61: 414–24

    Google Scholar 

  • Litovsky RY (1998) Physiological studies of the precedence effect in the inferior colliculus of the kitten. J Acoust Soc Am 103: 3139–152

    Article  CAS  PubMed  Google Scholar 

  • Litovsky RY, Yin TC (1998a) Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol 80: 1302–316

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Yin TC (1998b) Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J Neurophysiol 80: 1285–301

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Delgutte B (2002) Neural correlates of the precedence effect in the inferior colliculus: effect of localization cues. J Neurophysiol 87: 976–94

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106: 1633–654

    Article  CAS  PubMed  Google Scholar 

  • Mickey BJ, Middlebrooks JC (2001) Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J Neurophysiol 86: 1333–350

    CAS  PubMed  Google Scholar 

  • Moiseff A (1989a) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164: 637–44

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A (1989b) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164: 629–36

    Article  CAS  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 3: 2553–562

    CAS  PubMed  Google Scholar 

  • Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J Neurosci 9: 2591–605

    CAS  PubMed  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54: 535–73

    CAS  PubMed  Google Scholar 

  • Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Felmy F, Wiegrebe L, Klug A, Pollak GD, Grothe B (2007) Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J Neurosci 27: 1782–790

    Article  CAS  PubMed  Google Scholar 

  • Poganiatz I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of broadband interaural level different on head-turning behavior. J Comp Physiol A 187: 225–33

    Article  CAS  PubMed  Google Scholar 

  • Poganiatz I, Nelken I, Wagner H (2001) Sound-localization experiments with barn owls in virtual space: influence of interaural time difference on head-turning behavior. J Assoc Res Otolaryngol 2: 1–1

    CAS  PubMed  Google Scholar 

  • Populin LC, Yin TC (1998) Behavioral studies of sound localization in the cat. J Neurosci 18: 2147–160

    CAS  PubMed  Google Scholar 

  • Roman N, Wang D, Brown GJ (2003) Speech segregation based on sound localization. J Acoust Soc Am 114: 2236–252

    Article  PubMed  Google Scholar 

  • Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nat Neurosci 2: 1131–136

    Article  CAS  PubMed  Google Scholar 

  • Saberi K, Perrott Dr (1990) Lateralization thresholds obtained under conditions in which the precedence effect is assumed to operate. J Acoust Soc Am 87: 1732–737

    Article  CAS  PubMed  Google Scholar 

  • Sayers B, Cherry E (1957) Mechanism of binaural fusion in the hearing of speech. J Acoust Soc Am 29: 973–87

    Article  Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270: 303–04

    Article  CAS  PubMed  Google Scholar 

  • Shinn-Cunningham BG, Zurek PM, Durlach NI (1993) Adjustment and discrimination measurements of the precedence effect. J Acoust Soc Am 93: 2923–932

    Article  CAS  PubMed  Google Scholar 

  • Smedstad HB (2003) Effects of degraded sound-localization cues on neuronal spatial resolution. Biology. University of Oregon, Eugene, p 54

    Google Scholar 

  • Spezio ML, Takahashi TT (2003) Frequency-specific interaural level difference tuning predicts spatial response patterns of space-specific neurons in the barn owl inferior colliculus. J Neurosci 23: 4677–688

    CAS  PubMed  Google Scholar 

  • Spitzer MW, Takahashi TT (2006) Sound localization by barn owls in a simulated echoic environment. J Neurophysiol 95: 3571–584

    Article  PubMed  Google Scholar 

  • Spitzer MW, Bala AD, Takahashi TT (2004) A neuronal correlate of the prececdence effect is associated with spatial selectivity in the barn owl’s midbrain. J Neurophysiol 92: 2051–070

    Article  PubMed  Google Scholar 

  • Stecker GC, Hafter ER (2002) Temporal weighting in sound localization. J Acoust Soc Am 112: 1046–057

    Article  PubMed  Google Scholar 

  • Takahashi TT, Konishi M (1988a) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274: 212–38

    Article  CAS  PubMed  Google Scholar 

  • Takahashi TT, Konishi M (1988b) Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274: 190–11

    Article  CAS  PubMed  Google Scholar 

  • Takahashi TT, Keller CH (1992) Simulated motion enhances neuronal selectivity for a sound localization cue in background noise. J Neurosci 12: 4381–390

    CAS  PubMed  Google Scholar 

  • Takahashi TT, Keller CH (1994) Representation of multiple sound sources in the owl’s auditory space map. J Neurosci 14: 4780–793

    CAS  PubMed  Google Scholar 

  • Tollin DJ, Yin TC (2003) Psychophysical investigation of an auditory spatial illusion in cats: the precedence effect. J Neurophysiol 90: 2149–162

    Article  PubMed  Google Scholar 

  • Tollin DJ, Populin LC, Yin TC (2004) Neural correlates of the precedence effect in the inferior colliculus of behaving cats. J Neurophysiol 92: 3286–297

    Article  PubMed  Google Scholar 

  • Trahiotis C, Hartung K (2002) Peripheral auditory processing, the precedence effect and responses of single units in the inferior colliculus. Hear Res 168: 55–9

    Article  PubMed  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13: 371–86

    CAS  PubMed  Google Scholar 

  • Wallach H, Newman E, Rosenzweig M (1949) The precedence effect in sound localization. Am J Psychol 62: 315–36

    Article  CAS  PubMed  Google Scholar 

  • Wright BA, Lombardino LJ, King WM, Puranik CS, Leonard CM, Merzenich MM (1997) Deficits in auditory temporal and spectral resolution in language-impaired children. Nature 387: 176–78

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Grantham DW (1997) Cross-spectral and temporal factors in the precedence effect: discrimination suppression of the lag sound in free-field. J Acoust Soc Am 102: 2973–983

    Article  CAS  PubMed  Google Scholar 

  • Yin TC (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14: 5170–186

    CAS  PubMed  Google Scholar 

  • Yost WA, Soderquist DR (1984) The precedence effect: Revisited. J Acoust Soc Am 76: 1377–383

    Article  CAS  PubMed  Google Scholar 

  • Zurek PM (1980) The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am 67: 952–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Takahashi.

Additional information

This work was supported by grants from the National Institutes of Deafness and Communication Disorders (RO1 DC003925, F32 DC008267) and the National Institutes of General Medical Sciences (T32-GM007257).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T.T., Keller, C.H., Nelson, B.S. et al. Object localization in cluttered acoustical environments. Biol Cybern 98, 579–586 (2008). https://doi.org/10.1007/s00422-008-0232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0232-2

Keywords

Navigation