Skip to main content
Log in

Inhibition, not excitation, is the key to multimodal sensory integration

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Multimodal neuronal maps, combining input from two or more sensory systems, play a key role in the processing of sensory and motor information. For such maps to be of any use, the input from all participating modalities must be calibrated so that a stimulus at a specific spatial location is represented at an unambiguous position in the multimodal map. Here we discuss two methods based on supervised spike-timing-dependent plasticity (STDP) to gauge input from different sensory modalities so as to ensure a proper map alignment. The first uses an excitatory teacher input. It is therefore called excitation-mediated learning. The second method is based on an inhibitory teacher signal, as found in the barn owl, and is called inhibition-mediated learning. Using detailed analytical calculations and numerical simulations, we demonstrate that inhibitory teacher input is essential if high-quality multimodal integration is to be learned rapidly. Furthermore, we show that the quality of the resulting map is not so much limited by the quality of the teacher signal but rather by the accuracy of the input from other sensory modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3: 1178–183

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464–0472

    CAS  PubMed  Google Scholar 

  • Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Ann Rev Neurosci 24: 139–66

    Article  CAS  PubMed  Google Scholar 

  • Bi GQ, Rubin J (2005) Timing in synaptic plasticity: from detection to integration. Trends Neurosci 28: 222–28

    Article  CAS  PubMed  Google Scholar 

  • Calvert, G, Spence, C, Stein, BE (eds) (2004) The handbook of multisensory processes. MIT Press, Cambridge

    Google Scholar 

  • Claas B (1994) Removal of eyes in early larval stages alters the response of the clawed toad, Xenopus laevis, to surface waves. Physiol Behav 56: 423–28

    Article  CAS  PubMed  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44: 23–0

    Article  CAS  PubMed  Google Scholar 

  • Davison AP, Frégnac Y (2006) Learning cross-modal spatial transformations through spike timing-dependent plasticity. J Neurosci 26: 5604–615

    Article  CAS  PubMed  Google Scholar 

  • Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434: 221–25

    Article  CAS  PubMed  Google Scholar 

  • Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28: 3988–999

    Article  CAS  PubMed  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383: 76–8

    Article  CAS  PubMed  Google Scholar 

  • Grace MS, Woodward OM, Church DR, Calisch G (2001) Prey targeting by the infrare-imaging snake Python: effects of experimental and congenital visual deprivation. Behav Brain Res 119: 23–1

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund Y, Zheng W, Knudsen EI (2002) Gated visual input to the central auditory system. Science 297: 1556–559

    Article  CAS  PubMed  Google Scholar 

  • van Hemmen JL (2000) Theory of synaptic plasticity. In: Moss F, Gielen S(eds) Neuro-informatics, neural modelling, handbook of biological physics, vol 4. Elsevier, Amsterdam, pp 771–23

    Google Scholar 

  • van Hemmen JL (2002) The map in your head: How does the brain represent the outside world?. Chem Phys Chem 3: 291–98

    PubMed  Google Scholar 

  • Hötting K, Rösler F, Röder B (2004) Altered auditory-tactile interactions in congenitally blind humans: An event-related potential study. Exp Brain Res 159: 370–81

    Article  PubMed  Google Scholar 

  • Hyde PS, Knudsen EI (2001) A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum. J Neurosci 21: 8586–593

    CAS  PubMed  Google Scholar 

  • Izhikevich EM, Desai NJ (2003) Relating STDP to BCM. Neural Comp 15: 1511–523

    Article  Google Scholar 

  • Jiang B, Treviño M, Kirkwood A (2007) Sequential development of long-term potentiation and depression in different layers of the mouse visual cortex. J Neurosci 27: 9648–652

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH (1991) Plasticity of sensory and motor maps in adult mammals. Ann Rev Neurosci 14: 137–67

    Article  CAS  PubMed  Google Scholar 

  • Kaas JH, Collins CE (2004) The resurresction of multisensory cortex in primates: Connection patterns that integrate modalities. In: Calvert G, Spence C, Stein BE(eds) The handbook of multisensory processes, Chap. 17. MIT Press, Cambridge, pp 285–93

    Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking neurons. Phys Rev E 59: 4498–514

    Article  CAS  Google Scholar 

  • Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neur Comp 13: 2709–741

    Article  CAS  Google Scholar 

  • Kempter R, Leibold C, Wagner H, van Hemmen JL (2001) Formation of temporal-feature maps by axonal propagation of synaptic learning. Proc Natl Acad Sci USA 98: 4166–171

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Hutchings ME, Moore DR, Blakemore C (1988) Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332: 73–6

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417: 322–28

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Brainard MS (1991) Visual instruction of the neural map of auditory space in the developing optic tectum. Science 253: 85–7

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 230: 545–48

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1990) Sensitive and critical periods for visual calibration of sound localization by barn owls. J Neurosci 10: 222–32

    CAS  PubMed  Google Scholar 

  • Knudsen EI, du Lac S, Esterly SD (1987) Computational maps in the brain. Ann Rev Neurosci 10: 41–5

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Esterly SD, du Lac S (1991) Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; Acoustic basis and behavioral correlates. J Neurosci 11: 1727–1747

    CAS  PubMed  Google Scholar 

  • Linkenhoker BA, Knudsen EI (2002) Incremental learning increases the plasticity of the auditory space map in adult barn owls. Nature 419: 293–96

    Article  CAS  PubMed  Google Scholar 

  • Lisman J, Spruston N (2005) Postsynaptic depolarization requirements for LTP and LTD: A critique of spike timing-dependent plasticity. Nat Neurosci 8: 839–41

    CAS  PubMed  Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptci APs and EPSPs. Science 275: 213–15

    Article  CAS  PubMed  Google Scholar 

  • Mooney RD, Klein BG, Rhoades RW (1987) Effects of altered visual input upon the development of the visual system and somatosensory representations in the hamster’s superior colliculus. Neurosci 20: 537–55

    Article  CAS  Google Scholar 

  • van Opstal AJ, Munoz DP (2004) Auditory-visual interactions subserving primate gaze orienting. In: Calvert G, Spence C, Stein BE(eds) The handbook of multisensory processes, Chap.23. MIT Press, Cambridge, pp 373–93

    Google Scholar 

  • Pfister JP, Gerstner W (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci 26: 9673–682

    Article  CAS  PubMed  Google Scholar 

  • Pike FG, Meredith RM, Olding AWA, Paulsen O (1999) Postsynaptic bursting is essential for ‘Hebbian–induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Neurophysiol 518: 571–76

    CAS  Google Scholar 

  • Putzar L, Goerendt I, Lange K, Rösler F, Röder B (2007) Early visual deprivation impairs multisensory interactions in humans. Nat Neurosci 10: 1243–245

    Article  CAS  PubMed  Google Scholar 

  • Roberts PD, Bell CC (2002) Spike timing dependent synaptic plasticity in biological systems. Biol Cybern 87: 392–03

    Article  PubMed  Google Scholar 

  • Röder B, Rösler F, Spence C (2004) Early vision impairs tactile perception in the blind. Curr Biol 14: 121–24

    PubMed  Google Scholar 

  • van Rossum MCW, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20: 8812–821

    PubMed  Google Scholar 

  • Rubin JE, Gerkin RC, Bi GQ, Chow CC (2005) Calcium time course as a signal for spike-timing-dependent plasticity. J Neurophysiol 93: 2600–613

    Article  PubMed  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic pasticity. Nat Neurosci 3: 919–26

    Article  CAS  PubMed  Google Scholar 

  • Standage D, Jalil S, Trappenberg T (2007) Computational consequences of experimentally derived spike-time and weight dependent plasticity rules. Biol Cybern 96: 615–23

    Article  PubMed  Google Scholar 

  • Stanford TR, Quessy S, Stein BE (2005) Evaluating the operations underlying multisensory integration in the cat superior colliculus. J Neurosci 25: 6499–508

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Meredith MA (1993) The merging of the senses. MIT Press, Cambridge

    Google Scholar 

  • Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9: 255–66

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Jiang W, Stanford TR (2004) Multisensory integration in single neurons of the midbrain. In: Calvert G, Spence C, Stein BE(eds) The handbook of multisensory processes, Chap. 15. MIT Press, Cambridge, pp 243–64

    Google Scholar 

  • Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cambridge studies in theoretical neurobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Tzounopoulos T, Kim Y, Oertel D, Trussel LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7: 719–25

    Article  CAS  PubMed  Google Scholar 

  • Wallace MT, Stein BE (2007) Early experience determines how the senses will interact. J Neurophysiol 97: 921–26

    Article  PubMed  Google Scholar 

  • Wallace MT, Perrault TJ Jr, Hairston WD, Stein BE (2004) Visual experience is necessary for the development of multisensory integration. J Neurosci 24: 9580–584

    Article  CAS  PubMed  Google Scholar 

  • Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc Roy Soc Lond B 194: 431–45

    Article  CAS  Google Scholar 

  • Winkowski DE, Knudsen EI (2006) Top-down gain control of the auditory space map by gaze control circuitry in the barn owl. Nature 439: 336–39

    Article  CAS  PubMed  Google Scholar 

  • Wong ROL (1999) Retinal waves and visual system development. Ann Rev Neurosci 22: 29–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Huizong WT, Holt CE, Harris WA, Poo MM (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395: 37–4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Friedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedel, P., van Hemmen, J.L. Inhibition, not excitation, is the key to multimodal sensory integration. Biol Cybern 98, 597–618 (2008). https://doi.org/10.1007/s00422-008-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0236-y

Keywords

Navigation