Skip to main content

Advertisement

Log in

Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Burwick T (2006) Oscillatory networks: pattern recognition without a superposition catastrophe. Neural Comput 18: 356–380

    Article  PubMed  Google Scholar 

  • Cesmeli E, Lindsey DT, Wang DL (2002) An oscillatory correlation model of visual motion analysis. Percept Psychophys 64(8): 1191–1217

    PubMed  Google Scholar 

  • Dauce E, Quoy M, Doyon B (2002) Resonant spatiotemporal learning in large random recurrent networks. Biol Cybern 87: 185–198

    Article  PubMed  Google Scholar 

  • Eckes C, Triesch J, Malsburg C (2006) Analysis of cluttered scenes using and elastic matching approach for stereo images. Neural Comput 18: 1441–1471

    Article  PubMed  Google Scholar 

  • Ernst U, Pawelzik K, Geisel T (1998) Delay-induced multistable synchronization of biological oscillators. Phys Rev E 57(2): 2150–2162

    Article  CAS  Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic Press, New York

    Google Scholar 

  • Freeman WJ (2003) Evidence from human scalp electroencephalograms of global chaotic itinerancy. Chaos 13(3): 1067–1077

    Article  PubMed  Google Scholar 

  • Freeman WJ, Rogers LJ (2003) A neurobiological theory of meaning in perception. part v: multicortical patterns of phase modulation in gamma EEG. Int J Bifurcat Chaos 13(10): 2867–2887

    Article  Google Scholar 

  • Freeman WJ (2006) Origin, structure, and role of background EEG activity. part 4: neural frame simulation. Clin Neurophysiol 117: 572–589

    Article  PubMed  Google Scholar 

  • Freeman WJ, Holmes MD, West GA, Vanhatalo S (2006) Fine spatiotemporal structure of phase in human intracranial EEG. Clin Neurophysiol 117: 1228–1243

    Article  PubMed  Google Scholar 

  • Frith CD, Friston KJ (1996) The role of the thalamus in “Top Down” modulation of attention to sound. NeuroImage 4(3): 210–215

    Article  PubMed  CAS  Google Scholar 

  • Gevins AS, Cutillo BA, Smith ME (1995) Regional modulation of high resolution evoked potentials during verbal and non-verbal matching tasks. Electroencephalogr Clin Neurophysiol 94: 129–147

    Article  PubMed  CAS  Google Scholar 

  • Gray C, Singer W (1989) Stimulus specific neural oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702

    Article  PubMed  CAS  Google Scholar 

  • Gulick WL, Gescheider GA, Frisnia RD (1989) Hearing physiological acoustics, neural coding, and psychoacoustics. Oxford University Press, New York

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Phys 117: 500–544

    CAS  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1996a) Synaptic organizations and dynamical properties of weakly connected neural oscillators I. Analysis of a canonical model. Biol Cybern 75: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1996b) Synaptic organizations and dynamical properties of weakly connected neural oscillators II. Learning phase information. Biol Cybern 75: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, Heidelberg

    Google Scholar 

  • Izhikevich EM, Hoppensteadt FC (2003) Slowly coupled oscillators: phase dynamics and synchronization. SIAM J Appl Math 63(6): 1935–1953

    Article  Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14: 883–894

    Article  PubMed  CAS  Google Scholar 

  • Jansen BH, Miller VH, Mavrofrides DC, Stegink-Jansen CW (2003) Multidimensional EMG-based assessment of walking dynamics. IEEE Trans Neural Syst Rehabil Eng 11(3): 294–300

    Article  PubMed  Google Scholar 

  • Kazanovich Y, Borisyuk R (2006) An oscillatory neural model of multiple object tracking. Neural Comput 18: 1413–1440

    Article  PubMed  Google Scholar 

  • Kelso JA (1995) Dynamic patterns: the self-organization of brain and behavior. The MIT Press, Cambridge

    Google Scholar 

  • Kuramoto Y (1994) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Google Scholar 

  • Lehmann D (1977) The EEG as scalp field distribution in EEG informatics. In: Remond A (eds) A didactic review of methods and applications of EEG data processing. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 365–384

    Google Scholar 

  • Maistrenko YL, Lysyansky B, Hauptmann C, Burylko O, Tass PA (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75(66207): 1–8

    Google Scholar 

  • Masuda N, Doiron B, Longtin A, Aihara K (2005) Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural Comput 17: 2139–2175

    Article  PubMed  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35: 193–213

    Article  PubMed  CAS  Google Scholar 

  • Ohde RN, Ochs MT (1996) The effect of segment duration on the perceptual integration of nasals for adult and child speech. J Acoust Soc Am 100(4): 2486–2499

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103: 642–651

    Article  PubMed  CAS  Google Scholar 

  • Popovych OV, Hauptmann C, Tass P (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94(164102): 1–4

    Google Scholar 

  • Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65(041906): 1–7

    Google Scholar 

  • Stevens KN, Blumstein SE, Glicksman L, Burton M, Kurowski K (1992) Acoustic and perceptual characteristics of voicing in fractives and fricative clusters. J Acoust Soc Am 91(5): 2979–2999

    Article  PubMed  CAS  Google Scholar 

  • Tass P, Haken H (1996) Synchronization in networks of limit cycle oscillators. Z Phys B 100: 303–320

    Article  CAS  Google Scholar 

  • Tass P (1997) Phase and frequency shifts in a population of phase oscillators. Phys Rev E 56(2): 2048–2060

    Article  Google Scholar 

  • Tass P (1999) Phase resetting in medicine and biology. Springer, Berlin

    Google Scholar 

  • Tass P (2002) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87: 102–115

    Article  PubMed  Google Scholar 

  • Tass P (2003) Stochastic phase resetting of stimulus-locked responses of two coupled oscillators: transient response clustering, synchronization, and desynchronization. Chaos 13(1): 364–376

    Article  PubMed  Google Scholar 

  • Tass P (2004) Transmission of stimulus-locked responses in two oscillators with bistable coupling. Biol Cybern 91: 203–211

    Article  PubMed  Google Scholar 

  • Tass P (2005) Phase resetting and transient desynchronization in networks of globally coupled phase oscillators with inertia. Phys D 211: 128–138

    Article  CAS  Google Scholar 

  • Tass P, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94: 58–66

    Article  PubMed  Google Scholar 

  • van Wieringen A, Pols LC (1995) Discrimination of single and complex consonant-vowel and vowel-consonant-like formant transitions. J Acoust Soc Am 98(3): 1304–1312

    Article  Google Scholar 

  • von der Malsburg C, Buhmann J (1992) Sensory segmentation with coupled neural oscillators. Biol Cybern 67: 233–242

    Article  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J Jan 12(1): 124

    Google Scholar 

  • Yao Y, Freeman WJ (1990) Model of biological pattern recognition with spatially chaotic dynamics. Neural Netw 3: 153–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vonda H. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, V.H., Jansen, B.H. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning. Biol Cybern 99, 459–471 (2008). https://doi.org/10.1007/s00422-008-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0253-x

Keywords

Navigation