Skip to main content
Log in

A comparative study of pattern synchronization detection between neural signals using different cross-entropy measures

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Cross-approximate entropy (X-ApEn) and cross-sample entropy (X-SampEn) have been employed as bivariate pattern synchronization measures for characterizing interdependencies between neural signals. In this study, we proposed a new measure, cross-fuzzy entropy (X-FuzzyEn), to describe the synchronicity of patterns. The performances of three statistics were first quantitatively tested using five different coupled systems including both deterministic and stochastic models, i.e., coupled broadband noises, Lorenz–Lorenz, Rossler–Rossler, Rossler–Lorenz, and neural mass model. All the measures were compared with each other with respect to their ability to distinguish between different levels of coupling and their robustness against noise. The three measures were then applied to a real-life problem, pattern synchronization analysis of left and right hemisphere rat electroencephalographic (EEG) signals. Both simulated and real EEG data analysis results showed that the X-FuzzyEn provided an improved evaluation of bivariate series pattern synchronization and could be more conveniently and powerfully applied to different neural dynamical systems contaminated by noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anokhin AP, Lutzenberger W, Birbaumer N (1999) Spatiotemporal organization of brain dynamics and intelligence: an EEG study in adolescents. Int J Psychophysiol 33: 259–273

    Article  CAS  PubMed  Google Scholar 

  • Ansari-Asl K, Senhadji L, Bellanger J, Wendling F (2006) Quantitative evaluation of linear and nonlinear methods characterizing interdependencies between brain signals. Phys Rev E 74: 031916

    Article  CAS  Google Scholar 

  • Aydin S (2008) Comparison of power spectrum predictors in computing coherence functions for intracortical EEG signals. Ann Biomed Eng 37: 192–200

    Article  PubMed  Google Scholar 

  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39: 241–248

    Article  CAS  PubMed  Google Scholar 

  • Breakspear M (2004) Dynamic connectivity in neural systems: theoretical and empirical considerations. Neuroinformatics 2: 205–226

    Article  PubMed  Google Scholar 

  • Chen WT, Wang ZZ, Xie HB, Yu WX (2007) Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 15: 266–272

    Article  PubMed  Google Scholar 

  • Cohen A, Procaccia I (1985) Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys Rev A 31: 1872–1882

    Article  PubMed  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20: 1743–1755

    Article  PubMed  Google Scholar 

  • David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. NeuroImage 21: 659–673

    Article  PubMed  Google Scholar 

  • Diks C (1996) Estimating invariants of noisy attractors. Phys Rev E 53(5): R4263–R4266

    Article  CAS  Google Scholar 

  • Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57: 617–656

    Article  CAS  Google Scholar 

  • Grassberger P (1985) Generalizations of the Hausdorff dimension of fractal measures. Phys Lett A 107: 101–105

    Article  Google Scholar 

  • Grassberger P (1988) Finite sample corrections to entropy and dimension estimates. Phys Lett A 128: 369–373

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Estimation of the Kolmogorov entropy froma chaotic signal. Phys Rev A 28: 2591–2593

    Article  Google Scholar 

  • Hentschel HGE, Procaccia I (1983) The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8: 435–444

    Article  Google Scholar 

  • Honeycutt RL (1992) Stochastic Runge-Kutta algorithms I. White noise. Phys Rev A 45: 600–603

    Article  CAS  PubMed  Google Scholar 

  • Hu ZH, Shi PC (2006) Interregional functional connectivity via pattern synchrony. In: 9th international conference on control, automation, robotics and vision, pp 1–6

  • Hudetz AG (2002) Effect of volatile anesthetics on interhemispheric EEG cross-approximate entropy in the rat. Brain Res 954: 123–131

    Article  CAS  PubMed  Google Scholar 

  • Hudetz AG, Wood JD, Kampine JP (2003) Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram. Anesthesiology 99: 1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Janjarasjitt S, Loparo KA (2008) An approach for characterizing coupling in dynamical systems. Physica D 237: 2482–2486

    Article  Google Scholar 

  • Kaminski M, Liang H (2005) Causal influence: advances in neurosignal analysis. Crit Rev Biomed Eng 33(4): 347–430

    Article  PubMed  Google Scholar 

  • Kantz H (1994) Quantifying the closeness of fractal measures. Phys Rev E 49(6): 5091–5097

    Article  Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kolmogorov AN (1958) A new invariant of transitive dynamical systems. Dolk Akad Nauk SSSR 119: 861–864

    Google Scholar 

  • Kreuz T, Mormann F, Andrzejak RG, Kraskov A, Lehnertz K, Grassberger P (2007) Measuring synchronization in coupled model systems: a comparison of different approaches. Physica D 225: 29–42

    Article  Google Scholar 

  • Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144: 358–369

    Article  Google Scholar 

  • Palus M, Komarek V, Hrncir Z, Sterbova K (2001) Synchronization as adjustment of information rates: detection from bivariate time series. Phys Rev E 63: 046211

    Article  CAS  Google Scholar 

  • Palus M, Stefanovska A (2003) Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E 67: 055201

    Article  CAS  Google Scholar 

  • Papadelis C, Chen Z, Kourtidou-Papadeli C, Bamidis PD, Chouvarda I, Bekiaris E, Maglaveras N (2007) Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents. Clin Neurophysiol 118: 1906–1922

    Article  PubMed  Google Scholar 

  • Pereda E, Quiroga RQ, Bhattacharya J (2005) Nonlinear multivariate analysis of neurophsyiological signals. Prog Neurobiol 77: 1–37

    Article  PubMed  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci 88: 2297–2301

    Article  CAS  PubMed  Google Scholar 

  • Pincus SM (2001) Assessing serial irregularity and its implications for health. Ann NY Acad Sci 954: 245–267

    CAS  PubMed  Google Scholar 

  • Pincus SM (2006) Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disord 8: 430–440

    Article  PubMed  Google Scholar 

  • Quiroga RQ, Arnhold J, Grassberger P (2000) Learning driver-response relationships from synchronization patterns. Phys Rev E 61: 5142–5148

    Article  CAS  Google Scholar 

  • Quiroga RQ, Kraskov A, Kreuz T, Grassberger P (2002) Performance of different synchronization in real data: a case study on electroencephalographyic signals. Phys Rev E 65: 041903

    Article  CAS  Google Scholar 

  • Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278: H2039–H2049

    CAS  PubMed  Google Scholar 

  • Schilder F, Peckham BB (2006) Computing Arnol’d tongue scenarios. J Comput Phys 220(2): 932–951

    Article  Google Scholar 

  • Sinai AG (1959) On the concept of entropy of a dynamical system. Dolk Akad Nauk SSSR 124: 768–771

    Google Scholar 

  • Singer W (2001) Consciousness and the binding problem. Ann NY Acad Sci 929: 123–146

    Article  CAS  PubMed  Google Scholar 

  • Smirnov DA, Andrzejak RG (2005) Detection of weak directional coupling: phase-dynamics approach versus state-space approach. Phys Rev E 71: 036207

    Article  CAS  Google Scholar 

  • Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116: 2266–2301

    Article  CAS  PubMed  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. Lect Notes Math 898: 366–381

    Article  Google Scholar 

  • Takens F (1983) Invariants related to dimension and entropy. In: Atas do 13. Col. brasiliero de Matematicas, Rio de Janerio, Brasil

  • Theiler J (1986) Spurious dimension from correlation algorithm applied to limited time-series data. Phys Rev A 34: 2427–2432

    Article  PubMed  Google Scholar 

  • Zhang T, Yang Z, Coote JH (2007) Cross-sample entropy statistic as a measure of complexity and regularity of renal sympathetic nerve activity in the rat. Exp Physiol 92: 659–669

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, HB., Guo, JY. & Zheng, YP. A comparative study of pattern synchronization detection between neural signals using different cross-entropy measures. Biol Cybern 102, 123–135 (2010). https://doi.org/10.1007/s00422-009-0354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0354-1

Keywords

Navigation