Skip to main content
Log in

A population level computational model of the basal ganglia that generates parkinsonian local field potential activity

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Recordings from the basal ganglia’s subthalamic nucleus are acquired via microelectrodes immediately prior to the application of Deep Brain Stimulation (DBS) treatment for Parkinson’s Disease (PD) to assist in the selection of the final point for the implantation of the DBS electrode. The acquired recordings reveal a persistent characteristic beta band peak in the power spectral density function of the Local Field Potential (LFP) signals. This peak is considered to lie at the core of the causality–effect relationships of the parkinsonian pathophysiology. Based on LFPs acquired from human subjects during DBS for PD, we constructed a computational model of the basal ganglia on the population level that generates LFPs to identify the critical pathophysiological alterations that lead to the expression of the beta band peak. To this end, we used experimental data reporting that the strengths of the synaptic connections are modified under dopamine depletion. The hypothesis that the altered dopaminergic modulation may affect both the amplitude and the time course of the postsynaptic potentials is validated by the model. The results suggest a pivotal role of both of these parameters to the pathophysiology of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375

    Article  CAS  PubMed  Google Scholar 

  • Bamford NS, Robinson S, Palmiter RD, Joyce JA, Moore C, Meshul CK (2004) Dopamine modulates release from corticostriatal terminals. J Neurosci 24: 9541–9552

    Article  CAS  PubMed  Google Scholar 

  • Barchas JD, Akil H, Elliott GR, Holman RB, Watson SJ (1978) Behavioral neurochemistry: neuroregulators and behavioral states. Science 200: 964–973

    Article  CAS  PubMed  Google Scholar 

  • Baufreton J, Zhu ZT, Garret M, Bioulac B, Johnson SW, Taupignon AI (2005) Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J 19: 1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Bauswein E, Fromm C, Preuss A (1989) Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey. Brain Res 493: 198–203

    Article  CAS  PubMed  Google Scholar 

  • Beckstead RM, Wooten GF, Trugman JM (1988) Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography. J Comp Neurol 268: 131–145

    Article  CAS  PubMed  Google Scholar 

  • Bedard C, Kroger H, Destexhe A (2006) Model of low-pass filtering of local field potentials in brain tissue. Phys Rev 73: 051911

    CAS  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemont J (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337: 403–406

    Article  CAS  PubMed  Google Scholar 

  • Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid A-L (2002) Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17: S145–S149

    Article  PubMed  Google Scholar 

  • Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord 17: S28–S40

    Article  PubMed  Google Scholar 

  • Bevan MD, Magill PJ, Terman D, Bolam JP, Wilson CJ (2002) Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network. Trends Neurosci 25: 525–531

    Article  CAS  PubMed  Google Scholar 

  • Bolam JP, Hanley JJ, Booth PAC, Bevan MD (2000) Synaptic organization of the basal ganglia. J Anat 196: 527–542

    Article  CAS  PubMed  Google Scholar 

  • Boraud T, Brown P, Goldberg JA, Graybiel AM, Magill PJ (2005) Oscillations in the basal ganglia: the good, the bad, and the unexpected. Basal Ganglia VIII: 3–24

    Google Scholar 

  • Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18: 357–363

    Article  PubMed  Google Scholar 

  • Brown P, Williams D (2005) Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol 116: 2510–2519

    Article  PubMed  Google Scholar 

  • Brown P, Kupsch A, Magill PJ, Sharott A, Harnack D, Meissner W (2002) Oscillatory local field potentials recorded from the subthalamic nucleus of the alert rat. Exp Neurol 177: 581–585

    Article  PubMed  Google Scholar 

  • Bullock TH (1997) Signals and signs in the nervous system: the dynamic anatomy of electrical activity is probably information-rich. Proc Natl Acad Sci USA 94: 1–6

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Centonze D, Bernardi G (2000) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23: 57–63

    Article  Google Scholar 

  • Carpenter MB, Carleton SC, Keller JT, Conte P (1981) Connections of the subthalamic nucleus in the monkey. Brain Res 224: 1–29

    Article  CAS  PubMed  Google Scholar 

  • Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS (2008) Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 27: 671–682

    Article  PubMed  Google Scholar 

  • Charara A, Sidibe M, Smith Y (2003) Basal ganglia circuitry and synaptic connectivity. In: Tarsy D, Vitek JL, Lozano AM (eds) Contemporary clinical neurology: surgical treatment of Parkinson’s disease and other movement disorders. Humana Press, pp 19–39

  • Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K, Yousry T, Hariz MI, Brown P (2006) Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol 198: 214–221

    Article  PubMed  Google Scholar 

  • Choe Y, Miikkulainen R (2003) The role of postsynaptic potential decay rate in neural synchrony. Neurocomputing 52–54: 707–712

    Article  Google Scholar 

  • Cooper AJ, Stanford IM (2000) Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. J Physiol 527: 291–304

    Article  CAS  PubMed  Google Scholar 

  • Cooper AJ, Stanford IM (2001) Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABAA IPSCs in vitro. Neuropharmacology 41: 62–71

    Article  CAS  PubMed  Google Scholar 

  • Cosandier-Rimele D, Badier JM, Chauvel P, Wendling F (2007) A physiologically plausible spatio-temporal model for EEG signals recorded with intracerebral electrodes in human partial epilepsy. IEEE Trans Biomed Eng 54: 380–388

    Article  PubMed  Google Scholar 

  • Czubayko U, Plenz D (2002) Fast synaptic transmission between striatal spiny projection neurons. Proc Natl Acad Sci 99: 15764–15769

    Article  CAS  PubMed  Google Scholar 

  • Dostrovsky J, Bergman H (2004) Oscillatory activity in the basal ganglia—relationship to normal physiology and pathophysiology. Brain 127: 721–722

    Article  PubMed  Google Scholar 

  • Elson RC, Selverston AI, Abarbanel HDI, Rabinovich MI (2002) Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant. J Neurophysiol 88: 1166–1176

    PubMed  Google Scholar 

  • Falls WM, Park MR, Kitai ST (1983) An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. J Comp Neurol 221: 229–245

    Article  CAS  PubMed  Google Scholar 

  • Floran B, Floran L, Erlij D, Aceves J (2004) Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur J Pharmacol 498: 97–102

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ (1978) Models of the dynamics of neural populations. Electroencephalogr Clin Neurophysiol 34: 9–18

    Google Scholar 

  • Freeman WJ (2000) Characteristics of the synchronization of brain activity imposed by finite conduction velocities of axons. Int J Bifurc Chaos 10: 2307–2322

    Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models: an introduction. Cambridge University Press, New York

    Google Scholar 

  • Gillies A, Willshaw D (2004) Models of the subthalamic nucleus. The importance of intranuclear connectivity. Med Eng Phys 26: 723–732

    Article  CAS  PubMed  Google Scholar 

  • Gopalsamy K, Leung I (1996) Delay induced periodicity in a neural netlet of excitation and inhibition. Physica D 89: 395–426

    Article  Google Scholar 

  • Gotz T, Kraushaar U, Geiger J, Lubke J, Berger T, Jonas P (1997) Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 17: 204–215

    CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84: 401–410

    Article  CAS  PubMed  Google Scholar 

  • Haber SN (2008) Functional anatomy and physiology of the basal ganglia: non-motor functions. In: Tarsy D, Vitek JL, Starr PA, Okun MS (eds) Deep brain stimulation in neurological and psychiatric disorders. Humana Press, pp 33–62

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127: 4–20

    Article  PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci 30: 357–364

    Article  CAS  PubMed  Google Scholar 

  • Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26: 12921–12942

    Article  CAS  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357–366

    Article  CAS  PubMed  Google Scholar 

  • Jansen BH, Zouridakis G, Brandt ME (1993) A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol Cybern 68: 275–283

    Article  CAS  PubMed  Google Scholar 

  • Johnson PI, Napier TC (1997) GABA-and glutamate-evoked responses in the rat ventral pallidum are modulated by dopamine. Eur J Neurosci 9: 1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Wu SM (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge

    Google Scholar 

  • Kincaid AE, Zheng T, Wilson CJ (1998) Connectivity and convergence of single corticostriatal axons. J Neurosci 18: 4722–4731

    CAS  PubMed  Google Scholar 

  • Kita H, Kitai ST (1991) Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res 564: 296–305

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Kita T, Kitai ST (1985) Active membrane properties of rat neostriatal neurons in an in vitro slice preparation. Exp Brain Res 60: 54–62

    CAS  PubMed  Google Scholar 

  • Kreiss DS, Mastropietro CW, Rawji SS, Walters JR (1997) The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease. J Neurosci 17: 6807–6819

    CAS  PubMed  Google Scholar 

  • Kuhn AA, Kupsch A, Schneider GH, Brown P (2006) Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci 23: 1956–1960

    Article  PubMed  Google Scholar 

  • Kuhn AA, Kempf F, Brucke C, Gaynor Doyle L, Martinez-Torres I, Pogosyan A, Trottenberg T, Kupsch A, Schneider GH, Hariz MI et al (2008) High-frequency stimulation of the subthalamic nucleus suppresses oscillatory β activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci 28: 6165–6173

    Article  CAS  PubMed  Google Scholar 

  • Lange KW, Kornhuber J, Riederer P (1997) Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 21: 393–400

    Article  CAS  PubMed  Google Scholar 

  • Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345: 91–95

    Article  CAS  PubMed  Google Scholar 

  • Liu X (2003) What can be learned from recording local field potentials from the brain via implanted electrodes used to treat patients with movement disorders. Curr Med Lit 19: 1–6

    Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55: 809–823

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain rhythmic activity. Biol Cybern 15: 27–37

    CAS  Google Scholar 

  • Lopes da Silva FH, van Rotterdam A, Barts P, van Heusden E, Burr W (1976) Models of neuronal populations: the basic mechanisms of rhythmicity. Prog Brain Res 45: 281–308

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Pogosyan A, Sharott A, Csicsvari J, Bolam JP, Brown P, Magill PJ (2008) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28: 4795

    Article  CAS  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78: 189–225

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Electrical membrane properties of rat subthalamic neurons in an in vitro slice preparation. Brain Res 437: 35–44

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1990) Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: electrical membrane properties. Brain Res 527: 81–88

    Article  CAS  PubMed  Google Scholar 

  • Nambu A (2005) A new approach to understand the pathophysiology of Parkinson’s disease. J Neurol 252(Suppl 4): IV/1–IV/4

    CAS  Google Scholar 

  • Nambu A, Llinas R (1994) Electrophysiology of globus pallidus neurons in vitro. J Neurophysiol 72: 1127–1139

    CAS  PubMed  Google Scholar 

  • Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 43: 111–117

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  • Orieux G, Francois C, Feger J, Yelnik J, Vila M, Ruberg M, Agid Y, Hirsch EC (2000) Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson’s disease. Neuroscience 97: 79–88

    Article  CAS  PubMed  Google Scholar 

  • Parent A (1986) Comparative neurobiology of the basal ganglia. Wiley, New York

    Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The corticobasal gangliathalamocortical loop. Brain Res Rev 20: 91127

    Google Scholar 

  • Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6: 73–94

    Article  PubMed  Google Scholar 

  • Pollack AE (2001) Anatomy, physiology, and pharmacology of the basal ganglia. Neurol Clin 19: 523–534

    Article  CAS  PubMed  Google Scholar 

  • Priori A, Egidi M, Pesenti A, Rohr M, Rampini P, Locatelli M, Tamma P, Caputo E, Chiesa V, Barbieri S (2003) Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? J Neurosurg Sci 47: 56–60

    CAS  PubMed  Google Scholar 

  • Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, Locatelli M, Moxon KA, Villani RM (2004) Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol 189: 369–379

    Article  CAS  PubMed  Google Scholar 

  • Ravenscroft P, Brotchie J (2000) NMDA receptors in the basal ganglia. J Anat 196: 577–585

    Article  CAS  PubMed  Google Scholar 

  • Rinzel J, Terman D, Wang XJ, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279: 1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Parent M, Levesque M, Parent A (2000) Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424: 142–152

    Article  CAS  PubMed  Google Scholar 

  • Seamans J, Durstewitz D (2008) Dopamine modulation. Scholarpedia 3: 2711

    Google Scholar 

  • Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P (2005) Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21: 1413–1422

    Article  PubMed  Google Scholar 

  • Shen KZ, Johnson SW (2000) Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol 525: 331–341

    Article  CAS  PubMed  Google Scholar 

  • Shen KZ, Johnson SW (2006) Subthalamic stimulation evokes complex EPSCs in the rat substantia nigra pars reticulata in vitro. J Physiol 573: 697–709

    Article  CAS  PubMed  Google Scholar 

  • Shen KZ, Zhu ZT, Munhall A, Johnson SW (2003) Dopamine receptor supersensitivity in rat subthalamus after 6-hydroxydopamine lesions. Eur J Neurosci 18: 2967–2974

    Article  PubMed  Google Scholar 

  • Shink E, Smith Y (1995) Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA-and glutamate-containing terminals in the squirrel monkey. J Comp Neurol 358: 119–141

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23: 28–33

    Article  Google Scholar 

  • Smith Y, Wichmann T (2008) Functional anatomy and physiology of the basal ganglia: motor functions. In: Tarsy D, Vitek JL, Starr PA, Okun MS (eds) Deep brain stimulation in neurological and psychiatric disorders. Humana Press, pp 1–32

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353–387

    Article  CAS  PubMed  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22: 2963–2976

    CAS  PubMed  Google Scholar 

  • Trottenberg T, Kupsch A, Schneider GH, Brown P, Kuhn AA (2007) Frequency-dependent distribution of local field potential activity within the subthalamic nucleus in Parkinson’s disease. Exp Neurol 205: 287–291

    Article  PubMed  Google Scholar 

  • Utter AA, Basso MA (2008) The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev 32: 333–342

    Article  PubMed  Google Scholar 

  • Van Albada SJ, Robinson PA (2009) Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J Theor Biol 257: 642–663

    Article  CAS  PubMed  Google Scholar 

  • Van Rotterdam A, Lopes da Silva FH, Van den Ende J, Viergever MA, Hermans AJ (1982) A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44: 283–305

    CAS  PubMed  Google Scholar 

  • Vibert JF, Parkdaman K, Azmy N (1994) Interneural delay modification synchronizes biologically plausible neural networks. Neural Netw 7: 589–607

    Article  Google Scholar 

  • Vibert JF, Alvarez F, Pham J (1998) Effects of transmission delays and noise in recurrent excitatory neural networks. Biosystems 48: 255–262

    Article  CAS  PubMed  Google Scholar 

  • Walters JR, Hu D, Itoga CA, Parr-Brownlie LC, Bergstrom DA (2006) Phase relationship support a role for coordinated activity in the indirect pathway in organizing slow oscillations in basal ganglia output after loss of dopamine. Neuroscience 144: 762–776

    Article  PubMed  CAS  Google Scholar 

  • Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, Lang AE, Dostrovsky JO (2006) Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol 96: 3248–3256

    Article  PubMed  Google Scholar 

  • Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 83: 367–378

    Article  CAS  PubMed  Google Scholar 

  • Wendling F, Bartolomei F, Bellanger JJ, Chauvel P (2002) Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur J Neurosci 15: 1499–1508

    Article  CAS  PubMed  Google Scholar 

  • West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22: 294

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2006) Basal ganglia discharge abnormalities in Parkinson’s disease. J Neural Transm [Suppl] 70: 21–25

    Article  CAS  Google Scholar 

  • Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197: 244–251

    Article  PubMed  Google Scholar 

  • Yasumoto S, Tanaka E, Hattori G, Maeda H, Higashi H (2002) Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum. J Neurophysiol 87: 1234–1243

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Tsirogiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsirogiannis, G.L., Tagaris, G.A., Sakas, D. et al. A population level computational model of the basal ganglia that generates parkinsonian local field potential activity. Biol Cybern 102, 155–176 (2010). https://doi.org/10.1007/s00422-009-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-009-0360-3

Keywords