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Abstract Inanoisy system, such as the nervous system, can
movements be precisely controlled as experimentally dem-
onstrated? We point out that the existing theory of motor con-
trol fails to provide viable solutions. However, by adopting
a generalized approach to the nonconvex optimization prob-
lem with the Young measure theory, we show that a precise
movement control is possible even with stochastic control
signals. Numerical results clearly demonstrate that a consid-
erable significant improvement of movement precisions is
achieved. Our generalized approach proposes a new way to
solve optimization problems in biological systems when a
precise control is needed.

Keywords Neural control - Noncovnex optimization -
Young measure - movement control

1 Introduction

The sheer complexity of movement control is often masked
by the effortless ease with which we move our body, and only
becomes evident when we try to build machines that perform
similar tasks as we do. What makes the problem hard is the
presence of uncertainty both in the external world, and in
our own sensory-motor systems (Harris and Wolpert 1998;
Osborne et al. 2005; Tanaka et al. 2006). Indeed, one of the
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central issues in Neuroscience is to explain how the nervous
system deals so effectively with noise and variability.

The minimum-variance principle proposed by Harris and
Wolpert (1998) in their seminal work has largely influenced
the theoretical studies on the neural basis of motor control.
There, the authors argued that the observed characteristics of
our movements (e.g., the trajectories and velocity profiles of
the eyes during a saccade or of the hand in a reaching task)
are the end result of a process whereby the brain seeks to min-
imize the execution error (variance) caused by noise inherent
in the neural control signals. Within such a framework, the
actual control signals emitted by the nervous system would
be the (approximately) optimal solutions to related stochas-
tic control problems. In spite of its wide success, this theory
still presents some unresolved issues.

One of its main conclusions is that, assuming that noise
in the neural control signals is signal-dependent, and that
the objective is to reduce the movement error, the optimal
control signals are smooth function of time, as opposed to
the degenerate, bang—bang controls that would result if the
noise was independent of the signal. In Harris and Wolpert
(1998), this result was obtained numerically under the spe-
cific assumption that the control signal is a stochastic pro-
cess with an index of dispersion! equal to one (& = 1 in our
setting, see Fig. 1 and “Model” section). Later, an analyti-
cal solution was found (Feng and Zhang 2002; Feng et al.
2004) that generalized this result to a whole range of noise
models (¢ > 0.5 in our setting). However, for « < 0.5 the
scenario changes radically due to lack of convexity of the

! The index of dispersion is defined as half the power of the neural
signal in this article. For example, let o denotes the index of dispersion,
then the variance of the noise of the driving signal is expressed in the
form of kutz", where £ is the scale and u, is the neural driving signal at
time ¢. If the noise is Poisson, o = 0.5.
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related cost functional. In this case, the cost functional tends
to favor brief pulses of increasingly large amplitude; hence,
the optimal control signals turn out to be degenerate, i.e.,
delta functions. We remark that any pulse-like form of con-
trol which may be taken to approximate the optimal solution
in this case will produce velocity profiles with abrupt accel-
eration and deceleration phases, which differ markedly from
the bell-shaped profiles observed experimentally.

In the light of these results, one may draw the conclusion
that large noise is necessary to smooth out our movements.
However, in most in vivo experiments (including multi-elec-
trode array recordings from our group; Horton et al. 2005;
Christen et al. 2006) neurons appear to receive and emit spike
trains which are at most as variable as Poisson processes, i.e.,
o < 0.5. Besides, one must take into account that in vivo
recordings are performed in a highly nonstationary environ-
ment which could lead to significantly overestimate the irreg-
ularity of firing. In conclusion, one is left to wonder whether
the noise regime considered in Harris and Wolpert’s paper
(1998) is relevant.

This is linked to another issue. As illustrated in Fig. 1a,
for @ > 0.5 the movement error has a positive lower bound,
which sets an unsurpassable limit to the precision of the
movement. Yet recent experimental evidence (Osborne et al.
2005) has indicated that most of the movement error is due
to inaccurate sensory estimates of the external parameters
which define the task, so noise in the motor system may not,
by itself, limit our ability to move precisely.

All these bring us to the fundamental question which we
would like to address here: Is it possible to achieve a precise
control with a stochastic signal? As we mentioned above,
the answer has to be negative for « > 0.5; hence, one must
look further into the case « < 0.5 to find possible solutions.
However, in this case the problem is much harder to tackle
because the cost functional of our optimal control task is no
longer convex.

Here, we will first see how one can construct suitably
defined generalized solutions for the optimal control sig-
nal when the cost functional is nonconvex (0 < a < 0.5),
inspired by the idea of Young measure theory (Young 1937,
1942; Valadier 1990; Hanson 2007). In terms of these solu-
tions, we will demonstrate that the movement error can
approach zero, thus achieving a precise movement control.

2 Young measure

For an optimization problem, suppose Iy € R is the objec-
tive functional to be optimized on a set U/, where U/ is a set of
functions. The optimization problem is to find u* € U such
that

Io(u*) =  inf

Io(u) € R. ()
U—>RU{+00}

@ Springer

If the objective functional Iy(u) is of the form

Io(u) =/Fo(x,u(X))dx,

r

where I' ¢ RY and
Fo: T x R" — RU {+o0},

and the integrand Fy is convex on u (Fig. 1B), direct method
of the Calculus of Variations is the common technique to
solve this kind of questions. However, when there is lack of
existence of the classical solutions to the optimization prob-
lem (1), Young measure approach can be applied.

In most of the cases of lack of solutions in optimal control,
the essential reason is the oscillatory behavior of minimizing
sequences” (Pedregal 1999). We will demonstrate oscillatory
behavior of the control solution by the following example.
Consider the functional

1

Io(h) = / X2 + (1 — 2O dr,
0

where A is a measurable function from [0, 1] to [—1, 1] and
X satisfies dX/d¢t = A with boundary conditions X (0) = 0,
X (1) = 0. There is no A* such that Io(A*) = inf Ip(A). It
is clear that the functions A, (f) = sign[sin(2"T!x¢)] form
a minimizing sequence which asymptotically minimize the
cost for n — o0, but due to the increasingly rapid oscilla-
tions, the sequence {1, } admits no ordinary limit (see Fig. 1e).
Io(A*) = 0 is impossible for a single function.

The scenario described above is typical. To deal with the
oscillatory behavior of the optimal solutions, Young measure
was proposed by Young (1937, 1942) as a tool. The basic
idea underlying the Young measure approach is simple: we
enlarge the class of the competing functions in such a way
that, when extended to this new class, our optimization prob-
lem always admits a solution. We can regard each competing
function u(x), x € €2, as a family of probability measures
Vx = 8y(x) considered as a mapping v: 2 — M where M
represents the set of Radon measures® supported in some
appropriate euclidean space and § stands for the Dirac mass.
Any such mapping v = {v,}eq is called a Young measure
or parametrized measure. The success of Young measure in
the field of optimization is due to the fact that the cost func-
tionals are integrals. The advantage of this approach is that
Young measure furnishes a convenient way of dealing with
optimal solutions paying attention only to those features that
make a solution optimal and disregarding accidental proper-
ties (Pedregal 1999).

2 The minimizing sequences asymptotically minimize the cost but have
no limit in ordinary sense.

3 A Radon measure is a Borel measure that is finite on compact sets.
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Fig. 1 a Plotted is the optimal

variance I (1*) versus the noise A 1

parameter «. Results are scaled

so that the case of « = 1, 0.8

corresponds to unity. b A
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constraint is usually violated.
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boundary solutions (toggling
between the boundary) leads to
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Originally introduced in the context of optimal control
problems (Young 1937, 1942; Tuckwell 1984), Young mea-
sure has been successfully used in the field of engineering,
material science, and partial differential equations (Valadier
1990). So far, Young measure have not yet been used in the
field of biology, but it can be a convenient tool to solve some
optimization problems in biological systems. The follow-
ing sections provide examples illustrating the application of
Young measure in motor control problems of saccadic eye
movement.

3 Example 1: saccadic eye movement model

In order to illustrate our ideas, we consider a commonly
used model of saccadic eye movements (Harris and Wol-
pert 1998; Robinson et al. 1986) which is simple enough
to obtain analytical results. Let x denote the (horizontal)
eye displacement from the rest position measured in degrees
(eccentricity). We consider saccades from the primary posi-
tion (x(0) = 0) to targets located at a given eccentricity
(x(T) = D). We assume x evolves in time according to

1+ 10
x— L+t
7172

X +y A0 + 8] @)

05

1 ,
time

where 71, 72, and y are parameters characteristic of the ocu-
lomotor plant. The driving term in brackets models the motor
commands, i.e., the output of the motor neurons which inner-
vate the extraocular muscles,* and is assumed to be stochastic
in nature. We separate a deterministic term A(¢) (which we
will denote as the control signal in the following) and a noise
part (), which is modeled as a mean zero, gaussian white
noise with

BIEMEW)] = kL8 — 1) 3

where « and @ > 0 are parameters. Equation 3 describes the
experimental observation that the variability of neuronal sig-
nals in vivo tends to increase with the signal strength A(¢),
and generalizes the signal-dependent noise model consid-
ered by Harris and Wolpert (1998) where o = 1. We remark
that the driving term in Eq. 2 is only a continuous approx-
imation to the actual neural signal, which would be more
suitably described as a stochastic point process (Tuckwell
1984; Brown et al. 1999; Feng and Tuckwell 2003; Feng

4 We assume that force, or torque produced by the muscle is simply pro-
portional to the neural signal. More refined models taking into account
the temporal filtering property of the muscles, lead to higher-order
systems.
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2004). In particular, for ¢ < 0.5, « = 0.5, or ¢ > 0.5, the
input approximates of a process, respectively, less, equally,
or more variable than a Poisson process.

Solving Eq. 2, we obtain solution x (#) which is driven by
A(t), with initial conditions x(0) = 0, x(0) = O:

t

)//b]z(l‘—s))u(s) ds
x()Y 0
@) !

y/bzg(t — s)A(s)ds

0
t

V/blz(l — 5)2%(s) dB(s)

+| 9 ,
)//bzz(t —5)A%(s) dB(s)
0
where
t t
0= 25 on(4)-on (1)
-1 T2 T1

1T 1 t 1 t
by (t) = —exp|{—— ) — —exp|—— .
T — T T1 T1 %) T2

and B(r) stands for the standard Brownian motion.

Our optimal control problem is then defined as follows:
For a target position D, and time T, R > 0, find a control
signal A*(¢) such that

E[x(t)] = D, forte[T,T + R] ()
and
105 = min I(})
A€L22[0,T+R]
T+R
= min / Var[x (¢)]dz. @)
1€L22[0, T+R]

The space £>* stands for £ space,” where P = 2a. The
physical meaning of the problem is clear: at time T, the eye
must be on average on the target (Eq. 4), and as precisely
as possible (Eq. 5). Also, the requirement that the average
eye position be constant in the post-movement period ¢ €
[T, T + R] implies that the average velocity must be zero on
the target.

> The LP space is defined as a set of all measurable functions from
measurable space S to C or R, whose pth norm has a finite Lebesgue

1
integral, i.e., || f |l,= ([ |fIPdu)? < oo
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Note that

T+R

/ Var(x(¢))dt

T
' 2

T+R
:y2</ /hu(r—s),\(s)“- dB(s) dt>

T 0
T+R t
=y? / / by (t — $)IA(s)1* ds | dt, (©6)

T 0

then the original control problem defined by Eqs. 4 and 5 is
reduced to the following optimization problem: find A*(s) €
£22[0, T + R] which minimizes

T+R t
1(A)=/ /b%2(z—s)|x(s)|2“ds dr (7
T 0

subject to the constraint

t
D
/blz(t —$)A(s)ds = —, fort e [T, T + R]. ®)
) 14
We can rewrite the above objective functional /(}) and

express it by during-movement (/1 (1)) and post-movement
(I> (1)) functionals:

I(A) =L+ L),

where

T T+R .
Il(k)z/ /b%z(t—s)dt [A(s)]?* ds

0T+R T 7 ©)
L) = / /b%z(t—s)dt [A(s)]?% ds.

T T _

When 2« > 1, the objective functional /(1) is convex, and
we can solve this optimal control problem theoretically with
the method Calculus of Variation. The detailed technique and
solution is presented as follows.

3.1 Ordinary solution when o > 0.5
3.1.1 Post-movement solution int € [T, T + R]

The optimal post-movement solution A* for ¢t € [T, T +
R] of the objective functional I(1*) is determined by the
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constraint (8) and its derivative directly. By differentiating
Eq. 8 (since R > 0), we obtain

1 t / 1 1
——exp (—— )/exp( )A(s)ds + —exp( )
%) T2 72 Tl

. 0
/exp (r )A(s)ds =0 (10)
0

fort € [T, T + R]. Solving Eqgs. 8 and 10 we see that

t

D t
/exp ( ) A(s)ds = —exp (—)
ay 2

0 (11)

D t
/exp ( ) A(s)ds = —exp (—)
w2y 71

0
fort € [T, T + R]. This implies

won D
A‘ (t) - )
ny

and in particular

T
D
exp A(s)ds
T2 Ty
0
T
D T
exp A(s)ds = —exp|— ).
71 ny 7|
0

3.1.2 During-movement solution in t € [0, T']

Vi e [T, T + R]

Il

@]

>

o
—
SN
N

12)

To find the optimal signal A*(¢) int € [0, T] for the objective
functional 77 (1) during saccadic eye movement, we apply the
calculus of variations method in (9). To this end, let us define

r D D
A,/blz(T — A ds = —, A(1) = ,
14 1Y
0
tel[T, T+ R]  =Up. (13)
For a small 7, consider A + t¢ € Up, i.e.,
T
¢ €D, /exp( )¢(s)ds—0
T
/exp( )qb(s)ds_O
0
¢(t)=0,1 [T, T+R]t =Up. (14)

The first two constraints in Ug are from Eq. (12). We then

have

dli(A + t9)
dr

=0
which gives

T T+R
/ l { / byt —s) dt:| |x(s)|2“—lsgn(/\(s))¢(s)] ds = 0.

0 T
(15)

Comparing Eq. 15 with the first two constraints in %, we
conclude that

T+R

/ biy(t — s)dt [ [A()[** 'sgn(A(s)) = A, ) (16)

T

almost surely for s € [0, T]and A (&, n) with two parameters
&, n € Ris of the form

A€, ) —sexp( )+nexp(t) (17)

being the solution of the following equations

T
" S 1
Lexp (L) = / exp (%2) JAGE, )| T
0
T+R ~ 3T
-sgn[AG. n)] /b%z(z—s)dr ds
T
T
1
L exp (L /exp( )~|A<.s§,n>|m
0
T+R -5
sgn[A(E, n)] /b%z(z—s)dz ds.
T

Therefore, for « > 0.5 we obtain

AE(6) = |AGE, )| sgn[A(E, n)]
T+R — 5T

/ b3, (s — t)ds (18)

T

for + € [0, T]. Also, for the post-movement period ¢ €
(T, T + R] the optimal solution is simply given by the hold-
on control A* = %, as derived earlier. When o = 0.5, the
solution is harder to find analytically, but similar conclusions
hold. Hence, for @ > 0.5, a minimizer A* is guaranteed to
exist and to be unique by the convexity of the cost functional
and the set of admissible controls. Finally, one can easily
verify that 7 (A*) > 0.

For 0 < « < 0.5 the cost functional is concave; therefore,
according to Young measure theory, a solution, if exists, must
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be found among the extreme points of the set of admissible
control = {A € L: the constraint is verified} (Fig. 1c—d).
This means that any solution must be a superposition of delta
functions. For instance, one can easily verify that, for ¢t €
[0, T, all controls of the form A (1) = > ; A;8(r — ;) with
t; € [0, T] and suitable choice of the constants A;, will drive
the system on the target with absolute precision, i.e., they
bear a vanishing contribution to the error.® We conclude, that
for 0 < o < 0.5, the optimal control is degenerate and not
unique, with 7 (A*) = 0.

In Fig. la, we plotted the minimum movement error,
I (1*), as a function of «. The meaning of this result is clear.
For a > 0.5 there is a lower bound to the movement error.
In other words, although there exists an implementable and
finite signal which minimizes the error, the end result will
be degraded by higher noise levels in the system, consistent
with our intuition. By contrast, for 0 < o < 0.5 the mini-
mum error is zero; although, there is no finite control signal
that can achieve it. The question we will address in the next
section is whether—and most importantly how—such mini-
mum can be approached.

3.2 Generalized control when ¢ < 0.5

Based on our previous discussion, fora < 0.5 we can achieve
an arbitrary degree of precision, although the optimal control
A* which would reduce the error to zero is not implement-
able. Obviously, if we could find a sequence of finite controls
{1}, satisfying

lim 1(A5,) =0, (19)
M— o0

we could use these as a replacement for A* and improve
the accuracy as we wished. For instance, one may consider
selecting A, among the minimizers of / in the space of
bounded controls

Qu =QA(f € L0, T+R]|f| <M).

Unfortunately this approach is not directly feasible in prac-
tice. Indeed, when the cost functional is not convex, there is
no guarantee that the minimizers A%, exist among ordinary
functions.

From the previous discussion on Young measure in Sect. 2,
we can construct a generalized control for this nonconvex
optimization problem. Particularly, this generalized control
is a one-parameter family of probability distributions over
the control domain indexed by time, i.e., vV = {V;};e7. In
other words, while an ordinary control is a mapping which
assigns to each time a precise value to the driving signal, a

T+4R
6 For +>T, one could consider solutions of the form / 8t —t)

T
A(t)Hdt’

@ Springer

generalized control provides at each time a probability dis-
tribution over all the allowed control values. One sees that
ordinary controls map naturally onto (or can be identified
with) a subset of generalized controls,” hence the latter pro-
vides an extension of the former in some sense.

Let us see how our control problem can be reformulated
here. For convenience of notation, we will represent this
generalized control v by a stochastic process v(¢) such that
P(v(t) € A) = 7;(A) for any subset A € [0, 1.8 Then, for
a generalized control v we define the functional

I(®) = EI(v)
T[T T+R
/ / bl (t —s)dt | E([v(s)[*)ds s €[0,T]
0 T
T+R s
/ /b%zﬁ —s5)dt |E(v(s)[**)ds s [T, T +R],

T T

where E(-) denotes the expectation with respect to the mea-
sure of the process v(¢). Finally, the constraints on the admis-
sible generalized control are obtained in a similar fashion, i.e.

t s R
/exp (— ) E(w(s))ds = = ex
T2 oy
0
t
K D t
/exp (— ) E(w(s))ds = —exp (—)
T1 ny 3!
0

fort € [T, T + R].

We are now in a position to reconsider our original prob-
leminits generalized formulation. Starting from any ordinary
control, we can thus consider all the generalized controls
whose average correspond to it. In particular, when the cost
functional is concave, any generalized control which is not
exclusively concentrated on the signal, will bring a lower
generalized cost, and the cost will be minimum for those
measures which are concentrated on the extreme control val-
ues, say {0, M}. Thus, for any ordinary controls which obeys
our problem constraints, we obtain a corresponding “opti-
mal” generalized control in the form

(20)

v = (1= B@)do + (1),

with B(¢) € [0, 1] and § as the delta function.

By this, we proved that it is relatively easy in our case
to find good, albeit perhaps not optimal, generalized solu-
tions. These class of solutions are now defined in terms of a

7 Every ordinary control A can be identified with its associated gener-
alized control A; = 8, ;) where § stands for the Dirac mass.

8 However, we remark that the stochastic process v here is only a for-
mal “handle” to the underlying generalized control, and that strictly
speaking, there are no “realizations” of ¥, since the latter does not take
values in U.
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simple function, B(¢) and may be identified with a stochas-
tic processes toggling between two values, i.e., v such that
v(t) € {0, M}, with P(v(t) = M) = B(¢).

3.2.1 Generalized post-movement solution in
te[T, T+ R]

To minimize the post-movement objective functional /5 (A)
with constraint (8) for ¢ € [T, T + R], we restrict ourselves
to consider generalized controls which are concentrated on
extreme values only. To this end, consider the stochastic pro-
cessv(t),t € [T, T+ R],wherev(r) € {0, M}and P(v(t) =
M) = B(t) € [0, 1]. Let us see the implications of our con-
struction:

T+R[ s
EIz(v)z/ /b%z(t—s)dt E[|v(s)|**] ds
T LT
TH+R[ s
:/ /b%z(r—s) dr | M*B(s) ds

T LT

with the constraints

t
/exp( )E[v(s)] =/exp (i ) B(s)ds
T T2
0

t

/exp(t )E[v(s)]ds =
0

0

|
—
¢
>
S
A
N
<
=
>
N—
o
o)

I
«
[\
Y|b
o
>
o)
Ve
o~
v

fort € [T, T + R]. The constraints equations above imply
that B(s) is a constant measure, independent of s and

fors € [T, T + R]and M > 1.

To further explore the advantages of our approach here,
let us estimate the term E I>(v) in more details. Summarizing
results above we have

ElL(v) = Co(T, R) - M0y
where
THR[ s
Co(T, R) = / /b%z(t —s5)dt | ds
T LT

is a constant depending on 7 and R. Therefore, the variance
goes to zero as M goes to infinity at a rate of 1/M'~2% for
o < 1/2. In other words, the smaller the « is (the less noisy
the system is), the faster the variance approaches zero.

Numerically, the generalized control solution A}, (¢) for
t € [T, T 4+ R] can be constructed in the following way. For
agiventimestephandt+(k+1)h <T+R,k=0,1,2,...,
we define

Mit0<t—T —kh <hxpB(T +kh)

A1) = [0 i he BT +khy <t —T —kh <h 2

Therefore, 1, (¢) is a pulse function of width (z). Obvi-
ously, when i — 0, A3,(t) ~ v(¢) fort € [T, T 4 R].

3.2.2 Generalized during-movement solution int € [0, T]

The same idea can be applied to finding the generalized solu-
tion in [0, T'] as well. The problem we consider here is to
minimize the objective functional during movement 7 (1*)
with constraints (8) for A € £29[0, T + R] A [—M, M]. Ttis
easily seen that v(¢) should be arandom process taking values
in {—M, 0, M}. To simplify the issue further, we only con-
sider a stochastic process v(¢) taking two values alternatively.
Denote E = {t, v(t) > 0} and define P(v(t) = M) = w(t)
fort € E, fort € [0,T] — E, we have P(v(t) = —M) =
w(t). Hence the process v(¢) is uniquely defined by a one-
dimensional function w(¢).

Define f(t) = [w(t)Ig —w(t)Ij0,7]-£] the optimal prob-
lem becomes to find w(z) to minimize

T [ T+R
I = / / bl — ) di | MP|B(s)|ds (23)
0 T

with constraints

T
/exp( ),B(S)ds
0
T

s
/exp (T_l) B(s)ds = ng exp( )
0

for [B(1)] < 1.
To obtain the generalized control signal which asymptot-
ically approaches the global minimum, we define

-T t—T
,B(Z)—é—lexp( )+€—2exp( )

T %) 153
where &, & are two constants to be determined later. For

[exp ( )] for

i = 1, 2. The definitions above and the constralnts y1e1d

D T
e (%)
(24)

simplicity, let us further define w; () =

5 D
[lw1|%61 + (w1, w2)é2 = Ve
1y (25)
26 _
(w1, w2)§1 + [lw2||“&2 = Moty

@ Springer
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Fig. 2 Simulation results for saccadic eye movement model. a, b, ¢, d, e, f are the case for« = 1 and g, h, i, j, k, | are the case for o = 0.25. e, f,
h, i are sample velocities and sample pathes. Red curves are the mean. ¢, 1 are the mean and standard deviations

T
where (w1, @) = fa)l(s)a)z(s) ds. Therefore,
0

(51
&

1
) ol Pllozl? = (o1, @2))?

D
llw2|[* — (@1, ) Many
N0 2 )\ 2 )
1, W2 1 m
Summarize the result we have
El =C|(T,R) ———
1(v) = Ci(T. R) M %1,050y
where
T+R s
C1(T,R)=/ /b%z(t—s)dt W(s) ds

T T

is a constant depending on 7" and R, and

wtlloa]]? + ozl 1> = (o1, 02) - (01 + w2)

w =
© llot|wz]* = (@1, @2))?

@ Springer

It can be easily shown that E/; converges to zero with a rate
of 1/M'~2% similar to El>.

Numerically, )L}kw fort € [0, T'] can be exactly constructed
as A*M fort € [T, T 4+ R] with the width of being M or —M
depending on ¢. More precisely, for a given time step 4 and
t+k+1Dh<T,k=0,1,2,..., wedefine

m ()
[ sign(B(kh)) - M if 0 <1 —kh < hx|B(kh)|
1o if hx|Bkh)| <t —kh <h

3.3 Numerical simulations

(26)

In Fig. 2, we plot two cases of « = 1 (a, b, ¢, d, e, f) and
a = 0.25with M = 500 (g, h, 1,j, k, 1). Itis clearly shown that
when M = 500, o = 0.25, the control accuracy is improved
considerably, in comparison with the case of @ = 1. This
numerical simulation is in agreement with our theoretical
results derived above. The parameters used are 71 = 224
ms 7p = 13 ms, T = 50 ms, R =50 ms, D = 10 degree,
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Fig. 3 Schematic plot of Young measure type control signals. A Raster
plot of 100 neurons. B The firing rate of the 100 neurons, which turns
out to be Young measure type signals

y = le — 2,k = 0.58, exactly the same set of parameters
as in Harris and Wolpert (1998). It is interesting to compare
Fig. 2d with g, for example. We see that with our approach,
the accuracy is improved by 25 times! When we use M =
10, an improvement of 10 times is achieved (data not
shown).

4 Discussion

Thanks to the theoretical approach of Young measure, we
demonstrate that the presence of noise in the neural control
signals does not necessarily limit the precision of our
movements. Our ideas originated from the analysis of a clas-
sical model of movement control (Harris and Wolpert 1998).
In particular, we have observed that the solution to this prob-
lem changes qualitatively, depending on how fast the noise
(its variance) scale with the signal amplitude, i.e., while in
the supralinear case (o« > 0.5) there is a positive lower bound
on the movement error, in the sublinear case (0 < o < 0.5)
such lower bound vanishes, hence we can in principle find
controls which reduce the movement error arbitrarily close
to zero. This abrupt transition reflects the loss of convexity
of the cost functional for « < 0.5, which makes the most
interesting case for our purposes.

It turns out that concentrating the control signal in two
large and short pulses is not the only way to minimize the cost.
The larger the pulse is, the better the control is. Also, because

our control signals are effectively distributed throughout the
whole duration of the movement, they are inherently more
robust to perturbations. One can see that variability in the
actual implementation of our control strategy have little effect
on the performance.

Implement of the Young measure approach in motor con-
trol in neuroscience could be natural. Assume we have an
ensemble of neurons which fire spikes within a sequence of
time windows, as shown in Fig. 3A (raster plot). We see that
the firing rate as plotted in Fig. 3B naturally gives us the
Young measure type of control signals. Actually, the firing
patterns as depicted in Fig. 3A is widely reported in exper-
iments, see for example Rossoni et al. (2008). Besides, our
approach has great potential ramifications in other fields, e.g.,
robotics.
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