Skip to main content
Log in

Schema generation in recurrent neural nets for intercepting a moving target

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target’s anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF, Blum KI (1996) Functional significance of long-term potentiation for sequence learning prediction. Cereb Cortex 6: 406–416

    Article  CAS  PubMed  Google Scholar 

  • Abeles M (1991) Corticonics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Amari S (1977) Dynamic of pattern formation in lateral-inhibition type neural fields. Biol Cybern 27: 77–87

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ (1989) Modelling brain function. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Arbib MA (2003) Schema theory. In: Arbib MA (eds) Handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 993–998

    Google Scholar 

  • Arbib MA, Érdi P, Szentágothai J (1998) Neural organization. MIT Press, Cambridge, MA

    Google Scholar 

  • Arbib MA, Metta G, van der Smagt P (2008) Neurorobotics: from vision to action. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 1453–1480

    Chapter  Google Scholar 

  • Bastian A, Schöner G, Riehle A (2003) Preshaping and continuous evolution of motor cortical representations during movement preparation. Eur J Neurosci 18: 2047–2058

    Article  PubMed  Google Scholar 

  • Beckert K (2002) Antizipation der Dynamik von bewegten Zielen bei der Auge-Hand-Koordinatiion. Diploma-Thesis, Fachbereich Biologie, Universität Hamburg

  • Bekkering H, Adam J, Kingma H, Huson A, Whiting HTA (1994) Reaction time latencies of eye and hand movements in single- and dual-task conditions. Exp Brain Res 96: 471–476

    Google Scholar 

  • Ben-Itzhak S, Karniel A (2008) Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput 20: 779–812

    Article  PubMed  Google Scholar 

  • Bock O, Eckmiller R (1986) Goal-directed arm movements in absence of visual guidance: evidence for amplitude rather than position control. Exp Brain Res 62: 451–458

    Article  CAS  PubMed  Google Scholar 

  • Bockemühl T, Troje NF, Dürr V (2010) Inter-joint coupling and joint angle synergies of human catching movements. Hum Mov Sci 29: 73–93

    Article  PubMed  Google Scholar 

  • Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence. Oxford University Press, Oxford

    Google Scholar 

  • Bull L, Kovacs T (2005) Foundations of learning classifier systems: an introduction. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems. Springer, Berlin, pp 1–15

    Chapter  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95: 49–90

    Article  CAS  PubMed  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44: 2594–2606

    Article  PubMed  Google Scholar 

  • Camazine S, Deneubourg JL, Franks NR, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Choset H, Lynch KM, Hutchinson S, Kantor G, Burgrad W, Kavraki ILE, Thrun S (2005) Principles of robot motion. MIT Press, Cambridge, MA

    Google Scholar 

  • Coello Y (2005) Spatial context and visual perception for action. Psicológica 26: 39–59

    Google Scholar 

  • Crossman ERFW, Goodeve PJ (1983) Feedback control of hand-movement and Fitts’ law. Q J Exp Psychol 35A: 251–278

    Google Scholar 

  • Cruse H (1986) Constraints for joint angle control of the human arm. Biol Cybern 54: 125–132

    Article  Google Scholar 

  • Cruse H, Steinkühler U (1993) Solution of the direct and inverse kinematic problems by a common algorithm based on the mean of multiple computations. Biol Cybern 69: 345–351

    Article  Google Scholar 

  • Davidson PR, Wolpert DM (2004) Internal models underlying grasp can be additively combined. Exp Brain Res 155: 334–340

    Article  PubMed  Google Scholar 

  • Davidson PR, Wolpert DM (2005) Widespread access to predictive models in motor systems: a short review. J Neural Eng 2: 5313–5319

    Article  Google Scholar 

  • Denève S, Duhamel JR, Pouget A (2007) Optimal sensorimotor integration on recurrent cortical networks: a neural implementation of Kalman filters. J Neurosci 27: 5744–5756

    Article  PubMed  CAS  Google Scholar 

  • Dessing JC, Caljouw SR, Peper CE, Beek PJ (2004) A dynamical neural network for hitting an approaching object. Biol Cybern 91: 377–387

    Article  PubMed  Google Scholar 

  • Dessing JC, Peper CE, Bullock D, Beck PJ (2005) How position, velocity, and temporal information combine in the prospective control of catching: data and model. J Cognit Neurosci 17: 668–686

    Article  Google Scholar 

  • Destexhe A, Sejnowski TJ (2001) Thalamocortical assemblies. Oxford University Press, Oxford

    Google Scholar 

  • De Wit CC, Siciliano B, Bastin G (1996) Theory of robot control. Springer, London

    Google Scholar 

  • Doya K (2000) Reinforcement learning in continuous time and space. Neural Comput 12: 219–245

    Article  CAS  PubMed  Google Scholar 

  • Edwards R (1996) Approximation of neural network dynamics by reaction-diffusion equations. Math Methods Appl Sci 19: 651–677

    Article  Google Scholar 

  • Engelbrecht SE (2001) Minimum principle in motor control. J Math Psychol 45: 497–542

    Article  PubMed  Google Scholar 

  • Erlhagen W, Schöner G (2002) Dynamic field theory of movement preparation. Psychol Rev 109: 545–572

    Article  PubMed  Google Scholar 

  • Erlhagen W, Bastian A, Jancke D, Riehle A, Schöner G (1999) The distribution of neuronal population acvtivation (DPA) as a tool to study interaction and integration in cortical representations. J Neurosci Methods 94: 53–66

    Article  CAS  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5: 1688–1703

    CAS  PubMed  Google Scholar 

  • Fleischer AG (1986) Control of eye movements by working memory load. Biol Cybern 55: 227–238

    Article  CAS  PubMed  Google Scholar 

  • Fleischer AG (1989) Planning and execution of hand movements. Biol Cybern 60: 311–321

    Article  CAS  PubMed  Google Scholar 

  • Fleischer AG, Becker G (1986) Free hand movements during the performance of a complex task. Ergonomics 29: 49–63

    Article  CAS  PubMed  Google Scholar 

  • Fleischer AG, Becker G (1996) Selective visual attention during multiple-process control. In: Zangemeister WH, Stiehl HS, Freksa C (eds) Visual Attention and Cognition. Series: Advances in Psychology 116. Elsevier, Amsterdam, pp 365–377

    Google Scholar 

  • Fleischer AG, Rademacher U, Windberg HJ (1987) Individual characteristics of sitting behavior. Ergonomics 30: 703–709

    Article  Google Scholar 

  • Gaines BR (1969) Linear and nonlinear models of the human controller. Int J Man Mach Stud 1: 333–360

    Article  Google Scholar 

  • Gentner DR (1983) Keystroke timing in transcription typing. In: Cooper WE (eds) Cognitive aspects in skilled typewriting. Springer, Berlin, pp 95–120

    Google Scholar 

  • Georgopoulus AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophys 46: 725–742

    Google Scholar 

  • Georgopoulus AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2: 1527–1537

    Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking neuron models. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ghahramani Z, Wolpert DM (1997) Modular decomposition in visio motor learning. Nature 386: 392–395

    Article  CAS  PubMed  Google Scholar 

  • Giszter S, Davies M, Kargo W (2000) Augmenting postural primitives in spinal cord: dynamic force-field structures used in trajectory generation. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin, pp 334–346

    Google Scholar 

  • Gottlieb GL (2000) What do we plan or control when we perform a voluntary movement? In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin, pp 354–362

    Google Scholar 

  • Grammont F, Riehle A (2003) Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time. Biol Cybern 88: 360–373

    Article  CAS  PubMed  Google Scholar 

  • Hanneton S, Berthoz A, Droulez J, Slotine JJE (1997) Does the brain use sliding variables for the control movements? Biol Cybern 77: 381–393

    Article  CAS  PubMed  Google Scholar 

  • Hayhoe MM, Shrivastava A, Mruczek R, Pelz JB (2003) Visual memory and motor planning in a natural task. J Vis 3: 49–63

    Article  PubMed  Google Scholar 

  • Herz A, Sulzer B, Kühn R, Hemmen JLvan (1989) Hebbian learning reconsidered: representation of static and dynamic objects in associative neural nets. Biol Cybern 60: 457–467

    Google Scholar 

  • Hoff B, Arbib MA (1993) Models of trajectory formation and temporal interaction of reach and grasp. J Motor Behav 25: 175–192

    Google Scholar 

  • Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

    Google Scholar 

  • Holland JH (1995) Hidden order. Basic Books, New York

    Google Scholar 

  • Holland JH (2005) A mathematical framework for studying learning in classifier systems. In: Bull L, Kovacs T (eds) Foundations of learning classifier systems. Springer, Berlin, pp 203–217

    Chapter  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24: 849–937

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79: 2554–2558

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81: 3088–3092

    Article  CAS  PubMed  Google Scholar 

  • Howarth CI, Beggs WDA (1985) The control of simple movements by multisensory information. In: Heuer H, Kleinbeck U, Schmidt KH (eds) Motor behavior: programming, control and acquisition. Springer, Berlin, pp 125–151

    Google Scholar 

  • Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu J-Y (2004) Spriral waves in disinhibited mammalian neocortex. J Neurosci 24(44): 9897–9902

    Article  CAS  PubMed  Google Scholar 

  • Hutt A, Atay FM (2005) Analysis of nonlocal neural field for both general and gamma-distributed connectivities. Phys D 203: 30–54

    Article  Google Scholar 

  • Ijspeert AJ, Nakanishi J, Schaal, S (2002) Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE international conference on robotics and automation, Washington, DC, pp 1398–1403

  • Ilg W, Baku GH, Franz MO, Giese MA (2003) Hierarchical spatio-temporal morphable models for representation of complex movements for imitation learning. In: Nunes U, de Almeida A, Bejczy K, Kosuge K, Machadi JAT (eds) Proceedings of the 11th conference on advanced robotics, University of Coimbra, Coimbra, Portugal, pp 453–458

  • Izawa J, Kondo T, Ito K (2004) Biological arm motion through reinforcement learning. Biol Cybern 91: 10–22

    Article  PubMed  Google Scholar 

  • Jancke D, Erlhagen W, Dinse HR, Akhavan AC, Giese M, Steinhage A, Schöner G (1999) Parametric population representation of retinal location: neuronal interaction dynamics in cat primary visual cortex. J Neurosci 19: 9016–9028

    CAS  PubMed  Google Scholar 

  • Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2001) In: Insana MF, Leahy RM (eds) Information processing in medical imaging (IPMI). Springer, Berlin, pp 286–299

  • Kaebling LP, Littman ML, Moore AW (1996) Reinforcement learning: a survey. J Artif Intell 4: 237–285

    Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  • Karniel A, Inbar GF (1997) A model for learning human reaching movements. Biol Cybern 77: 173–183

    Article  CAS  PubMed  Google Scholar 

  • Keele SW (1968) Movement control in skilled motor performance. Psychol Bull 70: 387–403

    Article  Google Scholar 

  • Kleinfeld D (1986) Sequential state generation by model neural networks. Proc Natl Acad Sci USA 83: 9469–9473

    Article  CAS  PubMed  Google Scholar 

  • Khatib O, Sentis L, Park J, Warren J (2004) Whole body dynamic behaviour and control of human-like robots. Int J Hum Robot 1: 29–43

    Article  Google Scholar 

  • Land ME (2004) Eye movements in daily life. In: Chapula LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 1357–1368

    Google Scholar 

  • Lanzi PL, Loiacono D, Wilson SW, Goldberg DE (2005) XCS with computed prediction in continuous multistep environments. In: Proceedings of the IEEE congress on evolutionary computation, vol 1, pp 588–595

  • Lukashin AV, Amirikan BR, Mozhaev VL, Wilcox GL, Georgopoulos AP (1996) Modeling motor cortical operations by an attractor network of stochastic neurons. Biol Cybern 74: 255–261

    Article  CAS  PubMed  Google Scholar 

  • Massone LLE (1996) The role of plant property in arm trajectory formation: a neural network study. IEEE Trans Syst Man Cybern B 26: 719–732

    Article  CAS  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic, London

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9: 1265–1279

    Article  PubMed  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a Smith predictor?. J Motor Behav 25: 203–216

    CAS  Google Scholar 

  • Mikhailova I, Goerick C (2005) Conditions of activity bubble uniqueness in dynamic neural fields. Biol Cybern 92: 82–91

    Article  PubMed  Google Scholar 

  • Milton J, Mundel T, an der Heiden U, Spire J-P, Cowan J (1995) Traveling activity waves. In: Arbib H (ed) The handbook of brain theory and neural networks. MIT Press, Cambridge, MA, pp 994–997

  • Mohrmann-Lendla H, Fleischer AG (1991) The effect of a moving background on aimed hand movements. Ergonomics 34: 353–364

    Article  CAS  PubMed  Google Scholar 

  • Morasso P (1981) Spatial control of arm movements. Exp Brain Res 42: 223–227

    Article  CAS  PubMed  Google Scholar 

  • Murray JD (2004) Mathematical biology I and II. Springer, Berlin

    Book  Google Scholar 

  • Mussa-Ivaldi FA (2000) How much coordination can be obtained without representing time? In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin, pp 325–333

    Google Scholar 

  • Mussa-Ivaldi FA, Bizzi E (2000) Motor learning through the combination of primitives. Phil Trans R Soc Lond B 355: 1755–1769

    Article  CAS  Google Scholar 

  • Mussa-Ivaldi FA, Solla SA (2004) Neural primitives for motion control. IEEE J Ocean Eng 29: 640–650

    Article  Google Scholar 

  • Nori F, Frezza R (2005) A control theory approach to the analysis and synthesis of the experimentally observed motion primitives. Biol Cybern 93: 323–342

    Article  PubMed  Google Scholar 

  • Ostry DJ, Feldman A (2003) A critical evaluation of the force control hypothesis. Exp Brain Res 153: 275–288

    Article  PubMed  Google Scholar 

  • Oztop E, Arbib MA (2002) Schema design and implementation of the grasp-related mirror neurons. Biol Cybern 87: 116–140

    Article  PubMed  Google Scholar 

  • Nunez PL, Srinivasan R (2006) A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophys 117: 2424–2435

    Article  Google Scholar 

  • Palm G (1982) Neural assemblies. Springer, Berlin

    Google Scholar 

  • Patton JL, Fernando A, Mussa-Ivaldi FA (2002) Linear combinations of nonlinear models for predicting human-machine interface forces. Biol Cybern 86: 73–87

    Article  PubMed  Google Scholar 

  • Redish AD (1999) Beyond the cognitive map. MIT Press, Cambridge, MA

    Google Scholar 

  • Richardson, Flash T (2002) Comparing smooth arm movements with the two-thirds power law and the related segmented-control-hypothesis. J Neurosci 22: 8201–8211

    CAS  PubMed  Google Scholar 

  • Rougier NP (2006) Dynamic neural field with local inhibition. Biol Cybern 94: 169–179

    Article  PubMed  Google Scholar 

  • Salinas E, Abbott LF (1995) Transfer of coded information from sensory to motor networks. J Neurosci 15: 6461–6474

    CAS  PubMed  Google Scholar 

  • Sabes PN, Jordan MI, Wolpert DM (1998) The role of inertial sensitivity in motor planning. J Neurosci 18: 5948–5957

    CAS  PubMed  Google Scholar 

  • Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17: 5900–5920

    CAS  PubMed  Google Scholar 

  • Schaal S, Sternad D (2001) Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements. Exp Brain Res 136: 60–72

    Article  CAS  PubMed  Google Scholar 

  • Schaal S, Peters J, Nakanishi J, Ijspeert A (2005) Learning movement primitives. In: Dario P, Chatila R (eds) Robotics research. 11th international symposium on robotics research (ISRR ’03). Siena, Italy. Springer tracts in advanced robotics, 15. Springer, Berlin, pp 561–572

  • Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82: 225–260

    Article  Google Scholar 

  • Schmidt RA, Sherwood DE, Zelaznik HN, Leikind BJ (1985) Speed Accuracy trade-offs in motor behaviour: theories of impulse variability. In: Heuer H, Kleinbeck U, Schmidt KH (eds) Motor behavior: programming, control and acquisition. Springer, Berlin, pp 79–123

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi A (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14: 3208–3224

    CAS  PubMed  Google Scholar 

  • Shadmehr R, Wise SP (2005) The computational neurobiology of reaching and pointing. MIT Press, Cambridge, MA

    Google Scholar 

  • Shadmehr R, Thoroughman K (2000) Learning and memory formation of arm movements. In: Winters JM, Crago PE (eds) Biomechanics and neural control of posture and movement. Springer, Berlin, pp 347–353

    Google Scholar 

  • Shea CH, Wulf G (2005) Schema theory: a critical appraisal and reevaluation. J Motor Behav 37: 85–101

    Article  Google Scholar 

  • Sheridan MR (1984) Planning and controlling simple movements. In: Smyth MM, Wing AM (eds) The psychology of human movement. Academic, London, pp 47–82

    Google Scholar 

  • Smyth MM (1984) Perception and action. In: Smyth MM, Wing AM (eds) The psychology of human movement. Academic, London, pp 119–152

    Google Scholar 

  • Sommer G (1997) Algebraic aspects of designing behavior based systems. In: Sommer G, Koenderink JJ (1997) Algebraic frames for the perception-action cycle. Lecture notes in computer science, vol 1315. Springer, Berlin, pp 1–28

  • Sompolinsky H, Kanter I (1986) Temporal association in asymmetric neural networks. Am Phys Soc 57: 2861–2864

    Google Scholar 

  • Spoelstra J, Schweighofer N, Arbib MA (2000) Cerebellar learning of accurate predictive control for fast-reaching movements. Biol Cybern 82: 321–333

    Article  CAS  PubMed  Google Scholar 

  • Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, Chichester

    Google Scholar 

  • Steinkühler U, Cruse H (1998) A holistic model for an internal representation to control the movement of a manipulator with redundant degrees of freedom. Biol Cybern 79: 457–466

    Article  Google Scholar 

  • Stringer SM, Rolls ET, Trappenberg TP, Araujo IETde (2003) Self-organizing continuous attractor networks and motor function. Neural Netw 16: 161–182

    Google Scholar 

  • Stringer SM, Rolls ET, Trappenberg TP (2004) Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Netw 17: 5–27

    Article  CAS  PubMed  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning. MIT Press, Cambridge, MA

    Google Scholar 

  • Tanaka Y, Tsuji T, Kaneko M, Morasso PG (1998) Trajectory generation using time scaled artificial potential field. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Victoria, BC, Canada

  • Taylor JG (1999) Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80: 393–409

    Article  Google Scholar 

  • Terzuolo CA, Viviani P (1980) Determinants and characteristics of patterns used for typing. Neuroscience 5: 1085–1103

    Article  CAS  PubMed  Google Scholar 

  • Thelen E (1995) Time-scale dynamics in the development of an embodied cognition. In: Port RF, Gelder T (eds) Mind as motion. MIT Press, Cambridge, pp 69–100

    Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT Press, Cambridge MA

    Google Scholar 

  • Tin C, Poon CS (2005) Internal models in sensorimotor integration: perspectives from adaptive control theory. J Neural Eng 2: 147–163

    Article  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7: 907–915

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MJ (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80: 696–714

    CAS  PubMed  Google Scholar 

  • Todorov E, Jordan MJ (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5: 1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Tanaka Y, Morasso PG, Sanguineti V, Kaneko M (2002) Bio-mimetic trajectory generation of robots via artificial potential field with time base generator. IEEE Trans Syst Man Cybern 32: 426–439

    Article  Google Scholar 

  • Turing AM (1992) Morphogenesis. In: Saunders PT (eds) Collected works of A.M. Turing. North-Holland, Amsterdam

    Google Scholar 

  • Van der Helm FCT, van Soest AJ (2000) Planning of human motions: how simple must it be? In: Winters JM, Crago PE (eds) Biomechanics and Neural Control of Posture and Movement. Springer, Berlin, pp 373–381

    Google Scholar 

  • Van Galen G, Wing AM (1984) The sequencing of movements. In: Smyth MM, Wing AM (eds) The psychology of human movement. Academic, London, pp 153–181

    Google Scholar 

  • Van Hemmen JL (2004) Continuum limit of discrete neuronal structures: is cortical tissue an “excitable” medium?. Biol Cybern 91: 347–358

    Article  Google Scholar 

  • Van Hofsten C (1983) Catching skills in infancy. J Exp Psychol Hum Percept Perform 9: 75–85

    Article  Google Scholar 

  • Vecchio DD, Murray RM, Perona P (2003) Decomposition of human motion into dynamics-based primitives with application to drawing tasks. Automatica 39: 2085–2098

    Article  Google Scholar 

  • Vercher JL, Magenes G, Prablanc C, Gauthier GM (1994) Eye-head-hand coordination in pointing at visual targets: spatial and temporal analysis. Exp Brain Res 99: 507–523

    Article  CAS  PubMed  Google Scholar 

  • Vercher JL, Quaccia D, Gauthier GM (1995) Oculo-manual coordination control: respective role of visual and non-visual information in ocular tracking of self-moved targets. Exp Brain Res 103: 311–322

    Article  CAS  PubMed  Google Scholar 

  • Willwacher G (1976) Fähigkeiten eines assoziativen Speichersystems im Vergleich zu Gehirnfunktionen. Biol Cybern 24: 181–198

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR (1999) Spikes, decisions and actions: the dynamical foundations of neuroscience. Oxford University Press, Oxford

    Google Scholar 

  • Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13: 55–80

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000a) Computational principles of movement neuroscience. Nat Neurosci 3: 1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z (2000b) Maps, modules, and internal models in human motor control. In: Winters JM, Crago PE (eds) Biomechanics and Neural Control of Posture and Movement. Springer, Berlin, pp 317–324

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res 103: 460–470

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269: 1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cognit Sci 2: 338–347

    Article  Google Scholar 

  • Young LR, Stark L (1965) Biological control systems—a critical review and evaluation. NASA CR-190

  • Zago M, McIntyre J, Senot P, Lacquaniti F (2009) Visio-motor coordination and internal models for object interception. Exp Brain Res 192: 571–604

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G. Fleischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleischer, A.G. Schema generation in recurrent neural nets for intercepting a moving target. Biol Cybern 102, 451–473 (2010). https://doi.org/10.1007/s00422-010-0378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0378-6

Keywords