Skip to main content
Log in

Center-of-mass alterations and visual illusion of extent

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In the present communication, we have developed a computational model related to the conception of positional coding via centers-of-masses (centroids) of the objects’ luminance distributions. The model predictions have been tested by the results of our psychophysical study of geometrical illusion of extent evoked by a modified Brentano figure consisting of three separate spots clusters. In experiments, the centroids of the clusters were manipulated by varying the positions of additional non-target spots flanking the stimulus terminators. A good correspondence between the model predictions and the illusion magnitude changes provided convincing evidences in favor of “centroid” explanation of origin of the illusion investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badcock DR, Hess RF, Dobbins K (1996) Localization of element clusters: multiple cues. Vis Res 36: 1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Becker W, Fuchs AF (1969) Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vis Res 9: 1247–1258

    Article  CAS  PubMed  Google Scholar 

  • Bertulis A, Bulatov A, Bielevicius A (2008) Influence of distracter on perceived stimulus length and angle size. Psichologija (Vilnius) 38: 29–39

    Google Scholar 

  • Bettencourt KC, Somers DC (2009) Effects of target enhancement and distractor suppression on multiple object tracking capacity. J Vis 7: 1–11

    Article  Google Scholar 

  • Binsted G, Elliot D (1999) The Muller–Lyer illusion as a perturbation to the saccadic system. Hum Mov Sci 18: 103–117

    Article  Google Scholar 

  • Bocheva N, Mitrani L (1993) Model for visual localization. Acta Neurobiol Exp (Wars) 53: 377–384

    CAS  Google Scholar 

  • Bulatov A, Bertulis A (2005a) Superimposition of illusory patterns with contrast variations. Acta Neurobiol Exp (Wars) 65: 51–60

    Google Scholar 

  • Bulatov A, Bertulis A (2005b) Distracting effect in length matching. Acta Neurobiol Exp (Wars) 65: 265–269

    Google Scholar 

  • Bulatov A, Bertulis A, Mickiene L (1997) Geometrical illusions: study and modelling. Biol Cybern 77: 395–406

    Article  CAS  PubMed  Google Scholar 

  • Bulatov A, Bertulis A, Bielevicius A, Bulatova N (2009a) Interpretation of illusions of extent based on the centroid conception. Sens Syst (in Russian) 23(1): 3–12

    Google Scholar 

  • Bulatov A, Bertulis A, Bielevicius A, Loginovich Y (2009b) Distracter influence on the right angle perception. Zh Vyss Nerv Deiat Pavlova (in Russian) 59(3): 259–268

    CAS  Google Scholar 

  • Bulatov A, Bertulis A, Bulatova N, Loginovich Y (2009c) Centroid extraction and illusions of extent with different contextual flanks. Acta Neurobiol Exp (Wars) 69: 504–525

    Google Scholar 

  • Coren S (1986) An efferent component in the visual perception of direction and extent. Physiol Rev 93: 391–410

    CAS  Google Scholar 

  • Coren S, Girgus JS (1978) Seeing is deceiving: the psychology of visual illusions. Lawrence Erlbaum Associates, Hillsdale, NJ

    Google Scholar 

  • DeLucia PR, Longmire SP, Kennish J (1994) Diamond-winged variants of the Muller–Lyer figure: a test of Virsu’s (1971) centroid theory. Percept Psychophys 55: 287–295

    CAS  PubMed  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18: 193–222

    Article  CAS  PubMed  Google Scholar 

  • Fermüller C, Malm H (2004) Uncertainty in visual processes predicts geometrical optical illusions. Vis Res 44: 727–749

    Article  PubMed  Google Scholar 

  • Fink GR, Marshall JC, Weiss PH, Toni I, Zilles K (2002) Task instructions influence the cognitive strategies involved in line bisection judgments: evidence from modulated neural mechanisms revealed by fMRI. Neuropsychologia 40: 119–130

    Article  CAS  PubMed  Google Scholar 

  • Gandhi SP, Heeger DJ, Boynton GM (1999) Spatial attention affects brain activity in human primary visual cortex. Proc Natl Acad Sci USA 16: 3314–3319

    Article  Google Scholar 

  • Glister R, Kuhtz-Buschbeck JP (2010) The Müller–Lyer illusion: investigation of a center of gravity effect on the amplitudes of saccades. J Vis 10: 1–13

    Article  Google Scholar 

  • Hirsch J, Mjolsness E (1992) A center-of-mass computation describes the precision of random dot displacement discrimination. Vis Res 32: 335–346

    Article  CAS  PubMed  Google Scholar 

  • Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43: 171–216

    Article  CAS  PubMed  Google Scholar 

  • Kelly SP, Gomez-Ramirez M, Foxe JJ (2008) Spatial attention modulates initial afferent activity in human primary visual cortex. Cereb Cortex 18: 2629–2636

    Article  PubMed  Google Scholar 

  • Levi DM, Klein SA, Aitsebaomo AP (1985) Vernier acuity, crowding, and cortical magnification. Vis Res 25: 963–977

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ (1999) The Poggendorf illusion: a bias in the estimation of the orientation of virtual lines by second-stage filters. Vis Res 39: 2361–2380

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Aiba TS (1985) Positional acuity with chromatic stimuli. Vis Res 25: 689–695

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Glennerster A (1991) Efficiency of locating centers of dot-clusters by human observers. Vis Res 31: 2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Hole GJ, Glennerster A (1990) Biases and sensitivities in geometrical illusions. Vis Res 30: 1793–1810

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Mackaben M (1989) Sustained and transient components of focal visual attention. Vis Res 29: 1631–1647

    Article  CAS  PubMed  Google Scholar 

  • Olzak L, Thomas J (1984) Seeing spatial patterns. In: Boff K, Kaufman L, Thomas J (eds) Handbook of perception and human performance, vol 1. Wiley, West Sussex, pp 7–27

    Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13: 25–42

    Article  CAS  PubMed  Google Scholar 

  • Post RB, Welch RB, Caufield K (1998) Relative spatial expansion and contraction within the Müller–Lyer and Judd illusions. Perception 27: 827–838

    Article  CAS  PubMed  Google Scholar 

  • Proffitt DR, Cutting J (1980) Perceiving the centroid of curvilinear bounded rolling shapes. Percept Psychophys 28: 484–487

    CAS  PubMed  Google Scholar 

  • Restle F, Decker J (1977) Size of the Müller–Lyer illusion as a function of its dimensions: theory and data. Percept Psychophys 21: 489–503

    Google Scholar 

  • Robinson DL, Petersen SE (1992) The pulvinar and visual salience. Trends Neurosci 15: 127–132

    Article  CAS  PubMed  Google Scholar 

  • Sagi D, Julesz B (1986) Enhanced detection in the aperture of focal attention during simple shape discrimination tasks. Nature 321: 693–695

    Article  CAS  PubMed  Google Scholar 

  • Searleman A, Porac C, Brzuszkiewicz L (2003) Changing the strength of the horizontal/vertical illusion by altering the placement of the functional fovea. Poster presented at the Eastern Psychological Association, Baltimore, MD

    Google Scholar 

  • Searleman A, Porac C, Sherman M (2004) Manipulating the strength of the Ponzo illusion by controlling the position of the functional fovea. Poster presented at the Eastern Psychological Association, Washington, DC

  • Searleman A, Porac C, Dafoe C, Hetzel B (2005) Altering Muller–Lyer illusion magnitude using figural additions at the wing-shaft intersections. Am J Psychol 118: 619–637

    PubMed  Google Scholar 

  • Seizova-Cajic T, Gillam B (2006) Biases in judgments of separation and orientation elements belonging to different clusters. Vis Res 46: 2525–2534

    Article  PubMed  Google Scholar 

  • Sierra-Vázquez V, Serano-Pedraza I (2007) Single-band amplitude demodulation of Müller–Lyer illusion images. Spanish J Psychol 10: 3–19

    Google Scholar 

  • Solomon JA, Felisberti FM, Morgan MJ (2004) Crowding and the tilt illusion: toward a unified account. J Vis 4: 500–508

    Article  PubMed  Google Scholar 

  • Somers DC, Dale AM, Seiffert AE, Tootell RBH (1999) Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. Neurobiology 96: 1663–1668

    CAS  Google Scholar 

  • Toet A, Levi DM (1992) The two-dimensional shape of spatial interaction zones in the parafovea. Vis Res 32: 1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Troost BT, Weber RB, Daroff RB (1974) Hypometric saccades. Am J Ophthalm 78: 1002–1005

    CAS  Google Scholar 

  • Virsu V (1971) Tendencies to eye movement, and misperception of curvature, direction, and length. Percept Psychophys 9: 65–72

    Google Scholar 

  • Ward R, Casco C, Watt RJ (1985) The location of noisy visual stimuli. Can J Psychol 39: 387–399

    CAS  PubMed  Google Scholar 

  • Welch RB, Post RB, Lum W, Prinzmetal W (2004) The relationship between perceived length and egocentric location in Muller–Lyer figures with one versus two chevrons. Percept Psychophys 66: 1095–1104

    PubMed  Google Scholar 

  • Whitaker D, Walker H (1988) Centroid evaluation in the vernier alignment of random dot clusters. Vis Res 28: 777–784

    Article  CAS  PubMed  Google Scholar 

  • Worrall N, Firth D (1974) The components of the standard and reverse Müller–Lyer illusions. Q J Exp Psychol 26: 342–354

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Bulatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulatov, A., Bertulis, A., Gutauskas, A. et al. Center-of-mass alterations and visual illusion of extent. Biol Cybern 102, 475–487 (2010). https://doi.org/10.1007/s00422-010-0379-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0379-5

Keywords