Skip to main content
Log in

First return maps for the dynamics of synaptically coupled conditional bursters

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The pre-Bötzinger complex (preBötc) in the mammalian brainstem has an important role in generating respiratory rhythms. An influential differential equation model for the activity of individual neurons in the preBötc yields transitions from quiescence to bursting to tonic spiking as a parameter is varied. Further, past work has established that bursting dynamics can arise from a pair of tonic model cells coupled with synaptic excitation. In this paper, we analytically derive one- and two-dimensional maps from the differential equations for a self-coupled neuron and a two-neuron network, respectively. Using a combination of analysis and simulations of these maps, we explore the possible forms of dynamics that the model networks can produce as well as which transitions between dynamic regimes are mathematically possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorfer R, Koditschek D, Holmes P (2003) Stability analyisis of legged locomotion by symmetry-factored return maps. Int J Robot Res 23: 979–999

    Article  Google Scholar 

  • Best J, Borisyuk A, Rubin J, Terman D, Welschselberger M (2005) The dynamic range of bursting in a model respiratory pacemaker network. SIAM J Appl Dyn Syst 4: 1107–1139

    Article  Google Scholar 

  • Butera R, Rinzel J, Smith J (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82: 382–397

    PubMed  Google Scholar 

  • Butera R, Rinzel J, Smith J (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Population of coupled pacemaker. J Neurophysiol 82: 398–415

    PubMed  Google Scholar 

  • Channell P Jr., Cymbalyuk G, Shilnikov A (2007) Applications of the poincaré mapping technique to analysis of neuronal dynamics. Neurocomputing 70: 2107–2111

    Article  Google Scholar 

  • Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic β-cell. Biophys J 42: 181–190

    Article  CAS  PubMed  Google Scholar 

  • Ditto WL, Rauseo SN, Spano ML (1990) Experimental control of chaos. Phys Rev Lett 65: 3211–3214

    Article  PubMed  Google Scholar 

  • Dunmyre JR, Rubin JE (2009) Optimal intrinsic dynamics for bursting in a three-cell network. SIAM J Dyn Syst 9: 154–187

    Article  Google Scholar 

  • Ermentrout B (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Software Environ. Tools 14, SIAM, Philadelphia

  • Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci USA 95(3): 1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Gomes AA, Manica E, Varriale MC (2008) Applications of chaos control techniques to a three-species food chain. Chaos Solitons Fractals 35: 432–441

    Article  Google Scholar 

  • Hitczenko P, Medvedev GS (2009) Bursting oscillations induced by small noise. SIAM J Appl Math 69: 1359–1392

    Article  Google Scholar 

  • Innocenti G, Genesio R (2009) On the dynamics of chaotic spiking- bursting transition in the Hindmarsh-Rose neuron. Chaos 19: 023124

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich E (2000) Neural excitability, spiking, and bursting. Int J Bifurc Chaos 10: 1171–1266

    Article  Google Scholar 

  • Kuznetsov YA (1995) Elements of applied bifurcation theory, vol 112 of Applied Mathematical Sciences. Springer-Verlag, Berlin

    Google Scholar 

  • LoFaro T, Kopell N (1999) Timing regulation in a network reduced from voltage-gated equations to a one-dimensional map. J Math Biol 38: 479–533

    Article  CAS  PubMed  Google Scholar 

  • Medvedev GS (2005) Reduction of a model of an excitable cell to a one-dimensional map. Physica D 202: 37–59

    Article  Google Scholar 

  • Medvedev GS (2006) Transition to bursting via deterministic chaos. Phys Rev Lett 97: 048102

    Article  PubMed  Google Scholar 

  • Medvedev GS, Yoo Y (2008) Chaos at the border of criticality. Chaos 18(3): 033105,7

    Article  Google Scholar 

  • Milik A, Szmolyan P, Löffelmann H, Gröller E (1998) Geometry of mixed-mode oscillations in the 3-d autocatalator. Int J Bifurc Chaos 8: 505–519

    Article  Google Scholar 

  • Pedersen MG Sørensen MP (2006/07) The effect of noise in β-cell burst period. SIAM J Appl Math 67(2):530–542 (electronic), 2006/07

    Google Scholar 

  • Pontryagin LS, Rodygin LV (1960) Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing the derivatives. Sov Math Dokl 1: 611–614

    Google Scholar 

  • Rinzel J (1985) Bursting oscillations in an excitable membrane model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial differential equations. Springer-Verlag, Berlin, pp 304–316

    Chapter  Google Scholar 

  • Rinzel J, Troy WC (1982a) Bursting phenomena in a simplified oregonator flow system d activity an model. J Chem Phys 76: 1775–1789

    Article  CAS  Google Scholar 

  • Rinzel J, Troy WC (1982b) A one-variable map analysis of bursting in the belousov-zhabotinskii reaction. Lect Notes Biomath 51: 1–23

    Google Scholar 

  • Rubin JE (2006) Bursting induced by excitatory synaptic coupling in non-identical conditional relaxation oscillators or square-wave bursters. Phys Rev E 74: 021917

    Article  Google Scholar 

  • Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E 65: 041922–041930

    Article  Google Scholar 

  • Rulkov NF (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17: 203–223

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballayi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729

    Article  CAS  PubMed  Google Scholar 

  • Su J, Rubin J, Terman D (2004) Effects of noise on elliptic bursters. Nonlinearity 17: 133–157

    Article  Google Scholar 

  • Terman D (1991) Chaotic spikes arising from a model for bursting in excitable membranes. SIAM J Appl Math 51: 1418–1450

    Article  Google Scholar 

  • Terman D (1992) The transition from bursting to continuous spiking in an excitable membrane model. J Nonlinear Sci 2: 133–182

    Article  Google Scholar 

  • The MathWorks, Inc (2008) MATLAB The Language of Technical Computing, version 7.6.0.324(r2008a) edition

  • Wang X (1991) Period-doublings to chaos in a simple neural network. IEEE, pp 333–339

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manica, E., Medvedev, G.S. & Rubin, J.E. First return maps for the dynamics of synaptically coupled conditional bursters. Biol Cybern 103, 87–104 (2010). https://doi.org/10.1007/s00422-010-0399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0399-1

Keywords

Navigation