Skip to main content
Log in

Control theoretic interpretation of directional motion preferences in optic flow processing interneurons

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this article, we formalize the processing of optic flow in identified fly lobula plate tangential cells and develop a control theoretic framework that suggests how the signals of these cells may be combined and used to achieve reflex-like navigation behavior. We show that this feedback gain synthesis task can be cast as a combined static state estimation and linear feedback control problem. Our framework allows us to analyze and determine the relationship between optic flow measurements and actuator commands, which greatly simplifies the implementation of biologically inspired control architectures on terrestrial and aerial robotic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argyros A, Tsakiris D, Groyer C (2004) Biomimetic centering behavior for mobile robots with panoramic sensors. IEEE Robotics and Automation Magazine pp 21–30

  • Baraniuk R (2007) A lecture on compressive sensing. IEEE Signal Process Mag 24(4): 118–121

    Article  Google Scholar 

  • Barrows GL, Chahl J, Srinivasan M (2003) Biologically inspired visual sensing and flight control. Aeronaut J 107: 159–168

    Google Scholar 

  • Borst A, Haag J (2002) Neural networks in the cockpit of the fly. J Comp Physiol A 188: 419–437

    Article  CAS  Google Scholar 

  • Bruss AR, Horn KP (1983) Passive navigation. Comput Vis Graph Image Process 21: 3–20

    Article  Google Scholar 

  • Buschbeck E, Strausfeld N (1997) The relevance of neural architecture to visual performance: phylogenetic conservation and variation in dipteran visual systems. J Comp Neurol 383: 282–304

    Article  CAS  PubMed  Google Scholar 

  • Coombs D, Herman M, Hong TH, Nashman M (1998) Real-time obstacle avoidance using central flow divergence, and peripheral flow. IEEE Trans Robot Autom 14: 49–59

    Article  Google Scholar 

  • Cuntz H, Haag J, Forstner F, Segev I, Borst A (2007) Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proc Natl Acad Sci USA 104: 10229–10233

    Article  CAS  PubMed  Google Scholar 

  • Dahmen HJ, Franz MO, Krapp H (2001) Extracting egomotion from optic flow: limits of accuracy and neural matched filters. In: Zanker J, Zeil J (eds) Motion vision—computational, neural and ecological constraints. Springer, Berlin, pp 143–168

    Google Scholar 

  • Duchon A (1996) Maze navigation using optical flow. In: Proceedings of the fourth international conference on simulation of adaptive behavior, Cambridge, MA, pp 224–232

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure detection cells, a new class of visual interneurones. Biol Cybern 52: 195–209

    Google Scholar 

  • Egelhaaf M, Borst A (1993) Motion computation and visual orientation in flies. J Comp Biochem Physiol 104A: 659–673

    Article  Google Scholar 

  • Egelhaaf M, Kern R, Krapp H, Kretzberg J, Kurtz R, Warzecha A (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25: 96–102

    Article  CAS  PubMed  Google Scholar 

  • Franceschini N, Pichon JM, Blanes C (1992) From insect vision to robot vision. Philos Trans R Soc Lond B 337: 283–294

    Article  Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol Cybern 83: 185–197

    Article  CAS  PubMed  Google Scholar 

  • Franz MO, Mallot HA (2000) Biomimetic robot navigation. Robot Auton Syst 30: 133–153

    Article  Google Scholar 

  • Franz MO, Chahl JS, Krapp HG (2004) Insect-inspired estimation of egomotion. Neural Comput 16: 2245–2260

    Article  PubMed  Google Scholar 

  • Gibson J (1950) The perception of the visual world. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Green PY, Oh WE, Barrows G (2004) Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: Proceedings of the IEEE international conference on robotics and automation, New Orleans, LA

  • Grunwald AJ (2005) Stability and control of a remotely controlled indoors micro hovering vehicle. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, San Francisco, CA

  • Gurfil P, Rotstein H (2001) Partial aircraft state estimation from visual motion using the subspace constraints approach. J Guidance Control Dyn 24(5): 1016–1028

    Article  Google Scholar 

  • Haag J, Borst A (2003) Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions. J Comp Physiol A 189: 363–370

    CAS  Google Scholar 

  • Harrison R (2005) A biologically inspired analog ic for visual collision detection. IEEE Trans Circuits Syst 52(11): 2308–2318

    Article  Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly, part i. the horizontal cells: structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. Part II. the horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–79

    Article  Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. In: Miles F, Wallman J Visual motion and its role in the stabilization of Gaze. Elsevier, Amsterdam, pp 203–235

  • Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5: 285–298

    CAS  PubMed  Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora Erythrocephala. J Comp Physiol 149: 163–177

    Article  Google Scholar 

  • Hrabar S, Sukhatme GS (2004) A comparison of two camera configurations for optic-flow based navigation of a uav through urban canyons. In: Proceedings of the IEEE international conference on intelligent robots and systems, Sendai, Japan

  • Humbert JS, Hyslop AM (2010) Bioinspired visuomotor convergence. IEEE Trans Robot 26(1): 121–130

    Article  Google Scholar 

  • Humbert JS, Murray RM, Dickinson MH (2005) Sensorimotor convergence in visual navigation and flight control systems. In: Proceedings of the 16th IFAC world congress, Praha, Czech Republic

  • Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6(7): e173

    Article  PubMed  Google Scholar 

  • Hyslop A, Humbert J (2010) Autonomous navigation in 3-d urban environments using wide-field integration of optic flow. AIAA J Guidance Control Dyn 33: 147–159

    Article  Google Scholar 

  • Karmeier K, van Hateren J, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. J Neurophysiol 96: 1602–1614

    Article  CAS  PubMed  Google Scholar 

  • Kehoe JJ, Watkins AS, Causey RS, Lind R (2006) State estimation using optical flow from parallax-weighted feature tracking. In: Proceedings of the AIAA guidance, navigation, and control conference and exhibit, Keystone, CO

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56: 247–254

    Article  CAS  PubMed  Google Scholar 

  • Krapp H (2000) Neuronal matched filters for optic flow processing in flying insects. Int Rev Neurobiol 44: 93–120

    Article  CAS  PubMed  Google Scholar 

  • Krapp H, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Lett Nat 384: 463–466

    Article  CAS  Google Scholar 

  • Krapp H, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79: 1902–1917

    CAS  PubMed  Google Scholar 

  • Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular contributions to optic flow processing in the fly visual system. J Neurophysiol 85: 724–734

    CAS  PubMed  Google Scholar 

  • Land M, Nilsson D (2002) Animal eyes. Oxford University Press, Oxford

    Google Scholar 

  • Lindemann J, Kern R, van Hateren J, Ritter H, Egelhaaf M (2005) On the computations analyzing natural optic flow: quantitative model analysis of the blowfly vision pathway. J Neurosci 25: 6435–6448

    Article  CAS  PubMed  Google Scholar 

  • Lindemann J, Weiss H, Moller R, Egelhaaf M (2008) Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly. Biol Cybern 98: 213–227

    Article  PubMed  Google Scholar 

  • Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th international joint conference of artificial intelligence

  • Miao AX, Zacharias GL, Warren R (1996) Passive navigation from image sequences—a practitioner’s approach. In: Proceedings of the AIAA flight simulation technologies conference, San Diego, CA

  • Muratet L, Doncieux S, Briere Y, Meyer J (2005) A contribution to vision-based autonomous helicopter flight in urban environments. Robot Auton Syst 50(4): 195–209

    Article  Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161: 533–547

    Article  CAS  PubMed  Google Scholar 

  • Santos-Victor J, Sandini G (1997) Embedded visual behaviors for navigation. Robot Auton Syst 19: 299–313

    Article  Google Scholar 

  • Santos-Victor J, Sandini G, Curroto F, Garibaldi S (1995) Divergent stereo in autonomous navigation—from bees to robots. Int J Comput Vision 14: 159–177

    Article  Google Scholar 

  • Serres J, Ruffier F, Franceschini N (2005) Two optic flow regulators for speed control and obstacle avoidance. In: Proceedings of the IEEE international conference on medical robotics and biomechatronics, Pisa, Italy, February

  • Serres J, Dray D, Ruffier F, Franceschini N (2008) A vision-based autopilot for a miniature air vehicle: joint speed control and lateral obstacle avoidance. Auton Robots 25: 103–122

    Article  Google Scholar 

  • Srinivasan M, Zhang S (2004) Visual motor computations in insects. Annu Rev Neurosci 27: 679–696

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Lehrer M, Collet TS (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199: 237–244

    PubMed  Google Scholar 

  • Srinivasan M, Chahl JS, Weber K, Nagle SVMG, Zhang SW (1999) Robot navigation inspired by principles of insect vision. Robot Auton Syst 26: 203–216

    Article  Google Scholar 

  • Stevens B, Lewis FL (2003) Aircraft control and simulation. Wiley, Hoboken, NJ

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of the insect brain. Springer, Berlin

    Google Scholar 

  • Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205: 327–343

    PubMed  Google Scholar 

  • Taylor G, Krapp H (2007) Sensory systems and flight stability: what do insects measure, and why?. Adv Insect Physiol 34: 231–316

    Article  Google Scholar 

  • Webb TP, Prazenica RJ, Kurdila AJ, Lind R (2007) Vision-based state estimation for autonomous micro air vehicles. J Guidance Control Dyn 30(3): 816–826

    Article  Google Scholar 

  • Weber K, Venkatesh S, Srinivasan M (1999) Robot navigation inspired by principles of insect vision. Robot Auton Syst 26: 203–216

    Article  Google Scholar 

  • Wood R, Avadhanula S, Sahai R, Steltz E, Fearing R (2008) First takeoff of a biologially-inspired at-scale robotic insect. IEEE Trans Robot 24(2): 341–347

    Article  Google Scholar 

  • Zufferey JC, Floreano D (2006) Fly-inspired visual steering of an ultralight indoor aircraft. IEEE Trans Robot 22: 137–146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hyslop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyslop, A., Krapp, H.G. & Humbert, J.S. Control theoretic interpretation of directional motion preferences in optic flow processing interneurons. Biol Cybern 103, 353–364 (2010). https://doi.org/10.1007/s00422-010-0404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0404-8

Keywords