Skip to main content
Log in

Non-directional motion detectors can be used to mimic optic flow dependent behaviors

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Insect navigational behaviors including obstacle avoidance, grazing landings, and visual odometry are dependent on the ability to estimate flight speed based only on visual cues. In honeybees, this visual estimate of speed is largely independent of both the direction of motion and the spatial frequency content of the image. Electrophysiological recordings from the motion-sensitive cells believed to underlie these behaviors have long supported spatio-temporally tuned correlation-type models of visual motion detection whose speed tuning changes as the spatial frequency of a stimulus is varied. The result is an apparent conflict between behavioral experiments and the electrophysiological and modeling data. In this article, we demonstrate that conventional correlation-type models are sufficient to reproduce some of the speed-dependent behaviors observed in honeybees when square wave gratings are used, contrary to the theoretical predictions. However, these models fail to match the behavioral observations for sinusoidal stimuli. Instead, we show that non-directional motion detectors, which underlie the correlation-based computation of directional motion, can be used to mimic these same behaviors even when narrowband gratings are used. The existence of such non-directional motion detectors is supported both anatomically and electrophysiologically, and they have been hypothesized to be critical in the Dipteran elementary motion detector (EMD) circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beersma D, Stavenga D, Kuiper JW (1977) Retinal lattice, visual field and binocularities in flies. J Comp Physiol A 119: 207–220

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12(8): 297–306

    Article  CAS  PubMed  Google Scholar 

  • Dacke M, Srinivasan M (2007) Honeybee navigation: distance estimation in the third dimension. J Exp Biol 210(5): 845–853

    Article  CAS  PubMed  Google Scholar 

  • Douglass J, Strausfeld N (1995) Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J Neurosci 15(8): 5596–5611

    CAS  PubMed  Google Scholar 

  • Dror R, O’Carroll D, Laughlin S (2001) Accuracy of velocity estimation by Reichardt correlators. J Opt Soc Am A 18(2): 241–252

    Article  CAS  Google Scholar 

  • Dyhr JP, Higgins CM (2010) The spatial frequency tuning of optic-flow-dependent behaviors in the bumblebee Bombus impatiens. J Exp Biol 213: 1643–1650

    Article  PubMed  Google Scholar 

  • Esch H, Zhang S, Srinivasan M, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411(6837): 581–583

    Article  CAS  PubMed  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewe- gungsperzeption des Rüsselkäfers Chlorophanus. Z Nat B 11(9): 513–524

    Google Scholar 

  • Higgins C (2004) Non-directional motion may underlie insect behavioral dependence on image speed. Biol Cybern 91(5): 326–332

    Article  PubMed  Google Scholar 

  • Higgins C, Douglass J, Strausfeld N (2004) The computational basis of an identified neuronal circuit for elementary motion detection in dipterous insects. Vis Neurosci 21(04): 567–586

    Article  PubMed  Google Scholar 

  • Juusola M, Weckstrom M, Uusitalo R, Korenberg M, French A (1995) Nonlinear models of the first synapse in the light-adapted fly retina. J Neurophysiol 74(6): 2538–2547

    CAS  PubMed  Google Scholar 

  • Kirchner W, Srinivasan M (1989) Freely flying honeybees use image motion to estimate object distance. Naturwissenschaften 76(6): 281–282

    Article  Google Scholar 

  • Riabinina O, Philippides A (2009) A model of visual detection of angular speed for bees. J Theor Biol 257(1): 61–72

    Article  PubMed  Google Scholar 

  • Rivera-Alvidrez Z (2005) Computational modeling of neurons involved in fly motion detection. Master’s thesis, University of Arizona, Tucson, Arizona

  • Seidl R, Kaiser W (1981) Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J Comp Physiol A 143(1): 17–26

    Article  Google Scholar 

  • Serres J, Masson G, Ruffier F, Franceschini N (2008) A bee in the corridor: centering and wall-following. Naturwissenschaften 95(12): 1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Si A, Srinivasan M, Zhang S (2003) Honeybee navigation: properties of the visually driven ‘odometer’. J Exp Biol 206(8): 1265–1273

    Article  PubMed  Google Scholar 

  • Srinivasan M, Zhang S (2004) Visual motor computations in insects. Annu Rev Neurosci 27: 679–696

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Lehrer M, Kirchner W, Zhang S (1991) Range perception through apparent image speed in freely flying honeybees. Vis Neurosci 6(5): 519–535

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan M, Zhang S, Chandrashekara K (1993) Evidence for two distinct movement-detecting mechanisms in insect vision. Naturwissenschaften 80: 38–41

    Article  Google Scholar 

  • Srinivasan M, Zhang S, Lehrer M, Collett T (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199(1): 237–244

    PubMed  Google Scholar 

  • Srinivasan M, Poteser M, Kral K (1999) Motion detection in insect orientation and navigation. Vis Res 39(16): 2749–2766

    Article  CAS  PubMed  Google Scholar 

  • van Hateren J, Schilstra C (1999) Blowfly flight and optic flow. II. head movements during flight. J Exp Biol 202(11): 1491–1500

    PubMed  Google Scholar 

  • van Santen J, Sperling G (1985) Elaborated Reichardt detectors. J Opt Soc Am A 2(2): 300–320

    Article  PubMed  Google Scholar 

  • von Frisch K (1993) The dance language and orientation of bees. Harvard Univesity Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Dyhr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyhr, J.P., Higgins, C.M. Non-directional motion detectors can be used to mimic optic flow dependent behaviors. Biol Cybern 103, 433–446 (2010). https://doi.org/10.1007/s00422-010-0414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0414-6

Keywords