Skip to main content
Log in

Using individual-muscle specific instead of across-muscle mean data halves muscle simulation error

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Hill-type parameter values measured in experiments on single muscles show large across-muscle variation. Using individual-muscle specific values instead of the more standard approach of across-muscle means might therefore improve muscle model performance. We show here that using mean values increased simulation normalized RMS error in all tested motor nerve stimulation paradigms in both isotonic and isometric conditions, doubling mean simulation error from 9 to 18 (different at p < 0.0001). These data suggest muscle-specific measurement of Hill-type model parameters is necessary in work requiring highly accurate muscle model construction. Maximum muscle force (F max) showed large (fourfold) across-muscle variation. To test the role of F max in model performance we compared the errors of models using mean F max and muscle-specific values for the other model parameters, and models using muscle-specific F max values and mean values for the other model parameters. Using muscle-specific F max values did not improve model performance compared to using mean values for all parameters, but using muscle-specific values for all parameters but F max did (to an error of 14, different from muscle-specific, mean all parameters, and mean only F max errors at p ≤ 0.014). Significantly improving model performance thus required muscle-specific values for at least a subset of parameters other than F max, and best performance required muscle-specific values for this subset and F max. Detailed consideration of model performance suggested that remaining model error likely stemmed from activation of both fast and slow motor neurons in our experiments and inadequate specification of model activation dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

Terms in low pass filter (Eqs. 1, 2)

A, B :

Terms in FV equations (Eqs. 11, 13)

A act :

Maximum amplitude of force–length curves (Eqs. 5, 8, 9)

act:

Muscle activation (Eqs. 1, 3, 10–14)

c neg, c pos :

Curvatures of Hill hyperbola for shortening (Eq. 11) and lengthening (Eq. 13) contractions, respectively

curv ω :

Curvature of hyperbola relating ω and act (Eq. 10)

filter :

Decay amplitude per time step in low pass filter (Eqs. 2–4)

F L :

Active force at different muscle lengths (force–length curve) (Eqs. 5, 8, 14)

F P :

Steady-state passive force (parallel spring) (Eqs. 7, 14)

F SE :

Series elastic spring force (Eq. 6)

F V :

F L at different contraction velocities (force–velocity curve) (Eqs. 11, 13, 14)

k 1, k 2 :

Passive steady-state force–length curve constants (Eq. 7)

k 3 :

Proportionality constant in quadratic force equation (Eq. 6)

L CE :

Contractile element length (which equals parallel elastic length) (Eqs. 7, 8, 14)

L M :

Muscle length (Eq. 5)

L SE :

Series elastic element length (Eq. 6)

n :

Simulation time step number (Eqs. 1, 3)

scaling :

Scaling factor in low pass filter (Eq. 3)

t const :

Time constant in seconds of low pass filter (Eq. 4)

v :

Velocity of muscle length change (Eqs. 11, 13, 14)

v max neg, v max pos :

Maximum velocity of muscle length change for shortening (Eqs. 11, 12) and lengthening (Eq. 13) contractions, respectively

v max (act  =  1):

v max pos at an activation of 1 (Eq. 12)

ω :

“Length” frequency of force–length curves (Eqs. 5, 8–10)

x :

Stimulation input level in low pass filter (Eqs. 1, 3)

References

  • Bässler U (1988) Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences. J Exp Biol 136: 125–147

    Google Scholar 

  • Blümel M, Hooper SL, Guschlbauer C, White WE, Büschges A (2012a) Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles. Biol Cybern 106:543–558 doi:10.1007/s00422-012-0531-5

    Google Scholar 

  • Blümel M, Guschlbauer C, Gruhn S, Hooper SL, Büschges A (2012b) Hill-type muscle model parameters determined from experiments on single muscle show large animal-to-animal variation. Biol Cybern 106:559–571 doi:10.1007/s00422-012-0530-6

    Google Scholar 

  • Boug DM (2001) Physics for Game Developers. O’Reilly Media, Cambridge, MA

  • Büschges A, Akay T, Gabriel JP, Schmidt J (2008) Organizing network action for locomotion: insights from studying insect walking. Brain Res Rev 57: 162–171

    Article  PubMed  Google Scholar 

  • Campbell JI (1961) The anatomy of the nervous system of the mesothorax of Locusta migratoroides R & F. Proc Zool Soc Lond 137: 402–432

    Google Scholar 

  • Clarac F, Cattaert D, Le Ray D (2000) Central control components of a ‘simple’ stretch reflex. Trends Neurosci 23: 199–208

    Article  PubMed  CAS  Google Scholar 

  • Ekeberg O, Pearson KG (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94: 4256–4268

    Article  PubMed  Google Scholar 

  • Ekeberg O, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33: 287–300

    Article  PubMed  Google Scholar 

  • Golowasch J, Goldman MS, Abbott LF, Marder E (2002) Failure of averaging in the construction of a conductance-based neuron model. J Neurophysiol 87: 1129–1131

    PubMed  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4: 573–586

    Article  PubMed  CAS  Google Scholar 

  • Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25: 103–119

    Article  PubMed  CAS  Google Scholar 

  • Hatze H (1978) A general myocybernetic control model of skeletal muscle. Biol Cybern 28: 143–157

    Article  PubMed  CAS  Google Scholar 

  • Hooper SL, Guschlbauer C, von Uckermann G, Büschges A (2006) Natural neural output that produces highly variable locomotory movements. J Neurophysiol 96: 2072–2088

    Article  PubMed  Google Scholar 

  • Hooper SL, Guschlbauer C, von Uckermann G, Büschges A (2007) Slow temporal filtering may largely explain the transformation of stick inect (Carausius morosus) extensor motor neuron activity into muscle movement. J Neurophysiol 98:1718–1732

    Google Scholar 

  • Langlois JH, Roggmann LA (1990) Attractive faces are only average. Psychol Sci 1: 115–121

    Article  Google Scholar 

  • Pearson KG, Collins DF (1993) Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J Neurophysiol 70: 1009–1017

    PubMed  CAS  Google Scholar 

  • Pearson KG, Ekeberg O, Büschges A (2006) Assessing sensory function in locomotor systems using neuro-mechanical simulations. Trends Neurosci 29: 625–631

    Article  PubMed  CAS  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7: 1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Siebert T, Rode C, Herzog W, Till O, Blickhan R (2008) Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern 98: 133–143

    Article  PubMed  Google Scholar 

  • Smith SW (1997) The scientist and engineer’s guide to digital signal processing. California Technical Publishing, San Diego, CA

    Google Scholar 

  • von Twickel A, Büschges A, Pasemann F (2011) Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biol Cybern 104: 95–119

    Article  PubMed  Google Scholar 

  • Winters JM (1990) Hill-based muscle models: a systems engineering perspective. In: Winters JM, Woo SLY (eds) Multiple muscle systems: biomechanics and movement organization. Springer, New York, pp 69–93

    Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17: 359–411

    PubMed  CAS  Google Scholar 

  • Zakotnik J (2006) Biomechanics and neural control of targeted limb movements in an insect. PhD thesis, Universität Bielefeld

  • Zakotnik J, Matheson T, Dürr V (2006) Co-contraction and passive forces facilitate load compensation of aimed limb movements. J Neurosci 26: 4995–5007

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Hooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümel, M., Guschlbauer, C., Hooper, S.L. et al. Using individual-muscle specific instead of across-muscle mean data halves muscle simulation error. Biol Cybern 106, 573–585 (2012). https://doi.org/10.1007/s00422-011-0460-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0460-8

Keywords