Skip to main content
Log in

Inferior olive mirrors joint dynamics to implement an inverse controller

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

To produce smooth and coordinated motion, our nervous systems need to generate precisely timed muscle activation patterns that, due to axonal conduction delay, must be generated in a predictive and feedforward manner. Kawato proposed that the cerebellum accomplishes this by acting as an inverse controller that modulates descending motor commands to predictively drive the spinal cord such that the musculoskeletal dynamics are canceled out. This and other cerebellar theories do not, however, account for the rich biophysical properties expressed by the olivocerebellar complex’s various cell types, making these theories difficult to verify experimentally. Here we propose that a multizonal microcomplex’s (MZMC) inferior olivary neurons use their subthreshold oscillations to mirror a musculoskeletal joint’s underdamped dynamics, thereby achieving inverse control. We used control theory to map a joint’s inverse model onto an MZMC’s biophysics, and we used biophysical modeling to confirm that inferior olivary neurons can express the dynamics required to mirror biomechanical joints. We then combined both techniques to predict how experimentally injecting current into the inferior olive would affect overall motor output performance. We found that this experimental manipulation unmasked a joint’s natural dynamics, as observed by motor output ringing at the joint’s natural frequency, with amplitude proportional to the amount of current. These results support the proposal that the cerebellum—in particular an MZMC—is an inverse controller; the results also provide a biophysical implementation for this controller and allow one to make an experimentally testable prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus J (1971) Theory of cerebellar function. Math Biosci 10(1/2): 25–61

    Article  Google Scholar 

  • Allum JH, Mauritz KH (1984) Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles. J Neurophysiol 52(5): 797–818

    PubMed  CAS  Google Scholar 

  • Alvarez-Icaza R, Boahen K (2011) Deep cerebellar neurons mirror the spinal cord’s gain to implement an inverse controller. Biol Cybern 105(1): 29–40. doi:10.1007/s00422-011-0448-4

    Article  PubMed  Google Scholar 

  • Amende I, Kale A, McCue S, Glazier S, Morgan JP, Hampton TG (2005) Gait dynamics in mouse models of Parkinson’s disease and Huntington’s disease. J Neuroeng Rehabil 2:20 doi:10.1186/1743-0003-2-20

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4): 297–311. doi:10.1038/nrn1646

    Article  PubMed  CAS  Google Scholar 

  • Aruin AS, Zatsiorsky VM (1984) Biomechanical characteristics of human ankle-joint muscles. Eur J Appl Physiol Occup Physiol 52(4): 400–406

    Article  PubMed  CAS  Google Scholar 

  • Becker JD, Mote CD Jr. (1990) Identification of a frequency response model of joint rotation. J Biomech Eng 112(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  • Bennett DJ (1994) Stretch reflex responses in the human elbow joint during a voluntary movement. J Physiol 474(2): 339–351

    PubMed  CAS  Google Scholar 

  • Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88(2): 433–442

    Article  PubMed  CAS  Google Scholar 

  • Berthier NE, Singh SP, Barto AG, Houk JC (1993) Distributed representation of limb motor programs in arrays of adjustable pattern generators. J Cogn Neurosci 5(1): 56–78. doi:10.1162/jocn.1993.5.1.56

    Article  Google Scholar 

  • Blickhan, Full (1993) Similarity in multilegged locomotion: bouncing like a monopode. J Comp Physiol A 173(5):509–517

    Google Scholar 

  • Bobet J, Stein RB (1998) A simple model of force generation by skeletal muscle during dynamic isometric contractions. IEEE Trans Biomed Eng 45(8): 1010–1016. doi:10.1109/10.704869

    Article  PubMed  CAS  Google Scholar 

  • Chorev E, Manor Y, Yarom Y (2006) Density is destiny—on [corrected] the relation between quantity of T-type Ca2+ channels and neuronal electrical behavior. CNS Neurol Disord Drug Targets 5(6): 655–662

    Article  PubMed  CAS  Google Scholar 

  • De Schutter E, Steuber V (2009) Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162(3): 816–826. doi:10.1016/j.neuroscience.2009.02.040

    Article  PubMed  CAS  Google Scholar 

  • Devor A, Yarom Y (2002) Generation and propagation of subthreshold waves in a network of inferior olivary neurons. J Neurophysiol 87(6): 3059–3069

    PubMed  Google Scholar 

  • Eyre JA, Miller S, Ramesh V (1991) Constancy of central conduction delays during development in man: investigation of motor and somatosensory pathways. J Physiol 434: 441–452

    PubMed  CAS  Google Scholar 

  • Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45(3): 195–206

    Article  PubMed  CAS  Google Scholar 

  • Ghez C, Fahn S (1985) The cerebellum. In: Kandel E, Schwarts J, Jessel T (eds) Principles of neural science, 2nd edn. Elsevier, New York

    Google Scholar 

  • Gilbert PF, Thach WT (1977) Purkinje cell activity during motor learning. Brain Res 128(2): 309–328

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb GL, Agarwal GC (1978) Dependence of human ankle compliance on joint angle. J Biomech 11(4): 177–181

    Article  PubMed  CAS  Google Scholar 

  • Herbin M, Gasc JP, Renous S (2004) Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity. J Comp Physiol A 190(11): 895–906. doi:10.1007/s00359-004-0545-0

    Google Scholar 

  • Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45(2): 267–285

    PubMed  CAS  Google Scholar 

  • Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech 15(10): 747–752

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Kano M (1982) Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett 33(3):253–258

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich EM (2007) Dynamical systems in neuroscience: the geometry of excitability and bursting (Computational Neuroscience). MIT Press, Cambridge

    Google Scholar 

  • Jacobson GA, Lev I, Yarom Y, Cohen D (2009) Invariant phase structure of olivo-cerebellar oscillations and its putative role in temporal pattern generation. Proc Natl Acad Sci USA 106(9): 3579–3584. doi:10.1073/pnas.0806661106

    Article  PubMed  CAS  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68(2): 95–103

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Kimura T, Yin PB (1998) Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392(6675): 494–497. doi:10.1038/33141

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Licata F, Soechting JF (1982) The mechanical behavior of the human forearm in response to transient perturbations. Biol Cybern 44(1): 35–46

    Article  PubMed  CAS  Google Scholar 

  • Leznik E, Makarenko V, Llinas R (2002) Electrotonically mediated oscillatory patterns in neuronal ensembles: an in vitro voltage-dependent dye-imaging study in the inferior olive. J Neurosci 22(7): 2804–2815

    PubMed  Google Scholar 

  • Llinas R, Walton K, Lang E (2004) Cerebellum. In: Sheperd G (ed) The synaptic organization of the brain. Oxford University Press, New York

    Google Scholar 

  • Llinas R, Welsh JP (1993) On the cerebellum and motor learning. Curr Opin Neurobiol 3(6): 958–965

    Article  PubMed  CAS  Google Scholar 

  • Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376: 163–182

    PubMed  CAS  Google Scholar 

  • Llinas RR (2009) Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162(3): 797–804. doi:10.1016/j.neuroscience.2009.04.045

    Article  PubMed  CAS  Google Scholar 

  • Mano N, Kanazawa I, Yamamoto K (1986) Complex-spike activity of cerebellar Purkinje cells related to wrist tracking movement in monkey. J Neurophysiol 56(1): 137–158

    PubMed  CAS  Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77(5): 2736–2752

    PubMed  CAS  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202(2): 437–470

    PubMed  CAS  Google Scholar 

  • Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Hausser M (2009) Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62(3): 388–399. doi:10.1016/j.neuron.2009.03.023

    Article  PubMed  CAS  Google Scholar 

  • Ojakangas CL, Ebner TJ (1992) Purkinje cell complex and simple spike changes during a voluntary arm movement learning task in the monkey. J Neurophysiol 68(6): 2222–2236

    PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Kawato M (1999) Electrophysiological properties of inferior olive neurons: a compartmental model. J Neurophysiol 82(2): 804–817

    PubMed  CAS  Google Scholar 

  • Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fiber signals and their consequence(s). Behav Brain Sci 19(3): 384–389

    Article  Google Scholar 

  • Sinkjaer T, Hayashi R (1989) Regulation of wrist stiffness by the stretch reflex. J Biomech 22(11–12): 1133–1140

    Article  PubMed  CAS  Google Scholar 

  • Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1988) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60(3): 1110–1121

    PubMed  CAS  Google Scholar 

  • Weiss PL, Hunter IW, Kearney RE (1988) Human ankle joint stiffness over the full range of muscle activation levels. J Biomech 21(7): 539–544

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Lang EJ, Suglhara I, Llinas R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374(6521): 453–457. doi:10.1038/374453a0

    Article  PubMed  CAS  Google Scholar 

  • Welsh JP, Llinas R (1997) Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res 114: 449–461

    Article  PubMed  CAS  Google Scholar 

  • Wetmore DZ, Mukamel EA, Schnitzer MJ (2008) Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol 100((4): 2328–2347. doi:10.1152/jn.00344.2007

    Article  PubMed  Google Scholar 

  • Widrow B, Walach E (1996) Adaptive inverse control. Prentice Hall information and system sciences series. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978: 122–134

    Article  PubMed  CAS  Google Scholar 

  • Zhang LQ, Nuber G, Butler J, Bowen M, Rymer WZ (1998) In vivo human knee joint dynamic properties as functions of muscle contraction and joint position. J Biomech 31(1): 71–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Alvarez-Icaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez-Icaza, R., Boahen, K. Inferior olive mirrors joint dynamics to implement an inverse controller. Biol Cybern 106, 429–439 (2012). https://doi.org/10.1007/s00422-012-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0498-2

Keywords

Navigation