Skip to main content
Log in

Bio-inspired adaptive feedback error learning architecture for motor control

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albus JS: A theory of cerebellar function. Math Biosci 10(1–2), 25–61 (1971)

    Article  Google Scholar 

  • Albus JS: A new approach to manipulator control: the cerebellar model articulation controller (CMAC). J Dyn Syst Meas Control 97(3), 220–227 (1975)

    Article  Google Scholar 

  • Atkeson CG, Hale JG, Pollick F, Riley M, Kotosaka S, Schaul S, Shibata T, Tevatia G, Ude A, Vijayakumar S, Kawato E, Kawato M: Using humanoid robots to study human behavior. IEEE Intell Syst Appl 15(4), 46–56 (2000)

    Article  Google Scholar 

  • Attwell P, Cooke S, Yeo C: Cerebellar function in consolidation of a motor memory. Neuron 34(6), 1011–1020 (2002)

    Article  PubMed  CAS  Google Scholar 

  • Boyden E, Katoh A, Raymond J: Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Neuroscience 27(1), 581–609 (2004)

    CAS  Google Scholar 

  • Carrillo R, Ros E, Boucheny C, Coenen O: A real-time spiking cerebellum model for learning robot control. Biosystems 94(1–2), 18–27 (2008)

    Article  PubMed  Google Scholar 

  • Corke PI: A robotics toolbox for matlab. IEEE Robotics Autom Mag 3(1), 24–32 (1996)

    Article  Google Scholar 

  • Craig JJ: Introduction to robotics: mechanics and control, 3rd edn. Pearson/Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  • Dean P, Porrill J, Ekerot C, Jörntell H: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11(1), 30–43 (2010)

    Article  PubMed  CAS  Google Scholar 

  • Fujita M: Adaptive filter model of the cerebellum. Biol Cybern 206(3), 195–206 (1982)

    Article  Google Scholar 

  • German Aerospace Center (2011) DLR Light-Weight Robot (LWR). http://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3803/6175_read-8963/. Accessed 11 August 2011

  • Gomi H, Kawato M: Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68(2), 105–114 (1992)

    Article  PubMed  CAS  Google Scholar 

  • Haddadin S, Albu-SchSffer A, Hirzinger G (2007) Safe physical human-robot interaction: Measurements, analysis and new insights. In: Kaneko M, Nakamura Y (eds) ISRR, Springer, Springer Tracts in Advanced Robotics, vol 66, pp 395–407

  • Haith A, Vijayakumar S: Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models. Biol Cybern 100(1), 81–95 (2009)

    Article  PubMed  Google Scholar 

  • Hirzinger G, Butterfaß J, Fischer M, Grebenstein M, Hähnle M, Liu H, Schäfer I, Sporer N (2000) A mechatronics approach to the design of light-weight arms and multifingered hands. In: ICRA, pp 46–54

  • Honda T, Yamazaki T, Tanaka S, Nishino T (2010) A possible mechanism for controlling timing representation in the cerebellar cortex. In: International Symposium on Neural Networks, pp 67–76

  • Ito M: Mechanisms of motor learning in the cerebellum. Brain Res 886(1-2), 237–245 (2000)

    Article  PubMed  CAS  Google Scholar 

  • Ito M: Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4), 304–313 (2008)

    Article  PubMed  CAS  Google Scholar 

  • Jordan MI (1996) Computational aspects of motor control and motor learning. In: Heuer, H and Keele, S (ed) Handbook of perception and action: Motor Skills, Academic Press, New York, vol 2, pp 71–120

  • Jordan MI, Rumelhart DE: Forward models: supervised learning with a distal teacher. Cognit Sci 16, 307–354 (1992)

    Article  Google Scholar 

  • Kawato M (1990) Feedback-error-learning neural network for supervised motor learning. In: R Eckmiller (ed) Advanced neural computers, Elsevier, North-Holland, pp 365–372

  • Kawato M: Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6), 718–727 (1999)

    Article  PubMed  CAS  Google Scholar 

  • Lonini L, Dipietro L, Zollo L, Guglielmelli E, Krebs HI: An internal model for acquisition and retention of motor learning during arm reaching. Neural Comput 21(7), 2009–2027 (2009)

    Article  PubMed  Google Scholar 

  • Luque N, Garrido J, Carrillo R, Coenen O, Ros E: Cerebellarlike corrective model inference engine for manipulation tasks. IEEE Trans Syst Man Cybern B 41(5), 1299–1312 (2011a)

    Article  Google Scholar 

  • Luque N, Garrido J, Carrillo RR, Tolu S, Ros E: Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise. Int J Neural Syst 21(5), 385–401 (2011b)

    Article  PubMed  CAS  Google Scholar 

  • Luque NR, Garrido JA, Carrillo RR, Coenen OJMD, Ros E: Cerebellar input configuration toward object model abstraction in manipulation tasks. IEEE Trans Neural Netw 22(8), 1321–1328 (2011c)

    Article  PubMed  Google Scholar 

  • Marr D: A theory of cerebellar cortex. J Physiol 202, 437–470 (1969)

    PubMed  CAS  Google Scholar 

  • Masuda N, Amari S: A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning. J Comput Neurosci 24(2), 137–156 (2008)

    Article  PubMed  Google Scholar 

  • Miyamura A, Kimura H: Stability of feedback error learning scheme. Syst Control Lett 45(4), 303–316 (2002)

    Article  Google Scholar 

  • Nakanishi J, Schaal S: Feedback error learning and nonlinear adaptive control. Neural Netw 17(10), 1453–1465 (2004)

    Article  PubMed  Google Scholar 

  • Nguyen-Tuong D, Peters J (2008) Learning robot dynamics for computed torque control using local gaussian processes regression. In: Proceedings of the 2008 ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, IEEE Computer Society, Washington, DC, USA, pp 59–64

  • Philipona D, Coenen OJMD: Model of granular layer encoding of the cerebellum. Neurocomputing 58(60), 575–580 (2004)

    Article  Google Scholar 

  • Porrill J, Dean P: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput 19(1), 170–193 (2007)

    Article  PubMed  Google Scholar 

  • Porrill J, Dean P, Stone J: Recurrent cerebellar architecture solves the motor-error problem. Proc Biol Sci 271(1541), 789–796 (2004)

    Article  PubMed  Google Scholar 

  • Schaal S, Atkeson CG, Vijayakumar S: Scalable techniques from nonparametric statistics for real time robot learning. Appl Intell 17(1), 49–60 (2002)

    Article  Google Scholar 

  • Schweighofer N, Spoelstra J, Arbib MA, Kawato M: Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 10(1), 95–105 (1998)

    Article  PubMed  CAS  Google Scholar 

  • Schweighofer N, Doya K, Lay F: Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience 103, 35–50 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Sejnowski TJ: Storing covariance with nonlinearly interacting neurons. J Math Biol 4, 303–321 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Schaal S: Biomimetic gaze stabilization based on feedback-error-learning with nonparametric regression networks. Neural Netw 14(2), 201–216 (2001)

    Article  PubMed  CAS  Google Scholar 

  • Smola AJ, Schölkopf B: A tutorial on support vector regression. Stat Comput 14(3), 199–222 (2004)

    Article  Google Scholar 

  • Van der Smagt P: Cerebellar control of robot arms. Connect Sci 10, 301–320 (1998)

    Article  Google Scholar 

  • Van der Smagt P, Groen F, Schulten K: Analysis and control of a rubbertuator arm. Biol Cybern 75(5), 433–440 (1996)

    Article  Google Scholar 

  • Vijayakumar S, Schaal S (2000) Locally weighted projection regression: Incremental real time learning in high dimensional space. In: ICML ’00: Proceedings of the Seventeenth International Conference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1079–1086

  • Vijayakumar S, D’Souza A, Schaal S: Incremental online learning in high dimensions. Neural Comput 17(12), 2602–2634 (2005)

    Article  PubMed  Google Scholar 

  • Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Advances in neural information processing systems 8. MIT press, pp 514–520

  • Wolpert DM: Computational approaches to motor control. Trends Cogn Sci 1(6), 209–216 (1997)

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M: Internal models in the cerebellum. Trends Cogn Sci 2(9), 338–347 (1998)

    Article  PubMed  CAS  Google Scholar 

  • Wulff P, Schonewille M, Renzi M, Viltono L, Sassoè-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W, Farrant M, De Zeeuw CI: Synaptic inhibition of purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat Neurosci 12(8), 1042–1049 (2009)

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Tanaka S: The cerebellum as a liquid state machine. Neural Netw 20(3), 290–297 (2007)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Tolu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolu, S., Vanegas, M., Luque, N.R. et al. Bio-inspired adaptive feedback error learning architecture for motor control. Biol Cybern 106, 507–522 (2012). https://doi.org/10.1007/s00422-012-0515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0515-5

Keywords

Navigation