Skip to main content
Log in

An activity-dependent hierarchical clustering method for sensory organization

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Biological and artificial sensory systems share many features and functionalities in common. One shared challenge is the management setup and maintenance of sensory topological information. In the case of a massive artificial sensory receptor array, this is an extremely complex problem. Biological sensory receptor arrays, such as the visual or tactile system, face the same problem and have found excellent solutions by implementing processes of sensory organization. Not only can biological sensory organization initiate the topological data construction, it can deal with growing systems and repair damaged ones. Importantly, it can use the patterned activity of sensory receptors to extract topological relationships. Using inspiration from these biological processes, we propose an activity-dependent clustering method for organizing large arrays of artificial sensory receptors. We present an algorithm that proceeds hierarchically by building a quadtree description of sensory organization and possesses many qualities of its biological counterpart, namely it can operate autonomously, it uses the patterned activity of sensory receptors and it is capable of supporting growth and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Coombes S, Laing C (2009) Delays in activity-based neural networks. Philos Trans R Soc A Math Phys Eng Sci 367:1117–1129. doi:10.1098/rsta2008.0256

    Article  Google Scholar 

  • Cottrell M, Fort JC (1986) A stochastic model of retinotopy: a self-organizing process. Biol Cybern 53:405–411

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Sydekum E, Haiss F, Peduzzi S, Zörner B, Schneider R, Baltes C, Rudin M, Weber B, Schwab ME (2009) Functional and anatomical reorganization of the sensory-motor cortex after incomplete spinal cord injury in adult rats. J Neurosci 29(39):12,210–12,219 http://www.ncbi.nlm.nih.gov/pubmed/19793979

  • Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl):77–98

    Article  PubMed  Google Scholar 

  • Güßmann M, Pelster A, Wunner G (2007) Synergetic analysis of the Häussler-von der Malsburg equations for manifolds of arbitrary geometry. Annalen der Physik 519:379–394. doi:10.1002/andp.200610243

    Article  Google Scholar 

  • Häussler AF, von der Malsburg C (1983) Development of retinotopic projections—an analytical treatment. J Theor Neurobiol 2:47–73

    Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Horisaki R, Kagawa K, Nakao Y, Tanida J (2010) Irregular lens arrangement design to improve imaging performance of compound-eye imaging systems. Appl Phys Express 3(2):022–501. doi:10.1143/APEX.3.022501

    Article  Google Scholar 

  • Hornsey R, Thomas P, Wong W, Pepic S, Yip K, Krishnasamy R (2004) Electronic compound-eye image sensor: construction and calibration. In: Blouke MM, Sampat N, Motta RJ (eds) Society of photo-optical instrumentation engineers (SPIE) conference series, society of photo-optical instrumentation engineers (SPIE) conference series, vol. 5301, pp 13–24 doi:10.1117/12.526811

  • Johnson-Frey SH (2004) Stimulation through simulation? motor imagery and functional reorganization in hemiplegic stroke patients. Brain and Cognition 55(2):328–331 http://www.ncbi.nlm.nih.gov/pubmed/15177807

  • Kaas JH (2000) The reorganization of sensory and motor maps after injury in adult mammals. In: Gazzaniga MS (ed) The new cognitive neurosciences, 2nd edn. The MIT Press, Cambridge, pp 223–236

    Google Scholar 

  • Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  • Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nature reviews. Neuroscience 10(5):360–372. doi:10.1038/nrn2619

  • Nelles G, Spiekermann G, Jueptner M, Leonhardt G, Mueller S, Gerhard H, Diener HC (1999) Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke J Cereb Circul 30(8):1510–1516 http://www.ncbi.nlm.nih.gov/pubmed/10436092

    Google Scholar 

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905. doi:10.1109/34.868688

    Article  Google Scholar 

  • Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ, Fan KC (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 10(4):3597–3610. doi:10.3390/s100403597 http://www.mdpi.com/1424-8220/10/4/3597/

    Google Scholar 

  • Wandell B, Dumoulin S, Brewer A (2007) Visual field maps in human cortex. Neuron 56:366–383

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113. doi:10.1109/34.244673

    Google Scholar 

  • Zhu J (2008) Synaptic formation rate as a control parameter in a model for the ontogenesis of retinotopy. In: Proceedings of the 18th international conference on Artificial Neural Networks, Part II, ICANN ’08, pp. 462–470. Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-87559-848

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Requena-Carrión.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Requena-Carrión, J., Wilby, M.R., Rodríguez-González, A.B. et al. An activity-dependent hierarchical clustering method for sensory organization. Biol Cybern 108, 49–60 (2014). https://doi.org/10.1007/s00422-013-0577-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0577-z

Keywords

Navigation