Skip to main content

Advertisement

Log in

Hierarchical Bayesian models of cognitive development

  • Prospects
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This article provides an introductory overview of the state of research on Hierarchical Bayesian Modeling in cognitive development. First, a brief historical summary and a definition of hierarchies in Bayesian modeling are given. Subsequently, some model structures are described based on four examples in the literature. These are models for the development of the shape bias, for learning ontological kinds and causal schemata as well as for the categorization of objects. The Bayesian modeling approach is then compared with the connectionist and nativist modeling paradigms and considered in view of Marr’s (1982) three description levels of information-processing mechanisms. In this context, psychologically plausible algorithms and ideas of their neural implementation are presented. In addition to criticism and limitations of the approach, research needs are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelbar AM, Hedetniemi SM (1998) Approximating MAPs for belief networks is NP-hard and other theorems. Artif Intell 102:21–38

    Article  Google Scholar 

  • Aldous DJ (1985) Exchangeability and related topics. In: Hennequin P (ed) École d’Été de Probabilités de Saint-Flour XIII – 1983. Springer, Berlin, pp 1–198

    Chapter  Google Scholar 

  • Anderson JR (1990) The adaptive character of thought. Lawrence Erlbaum Associates Inc, Hillsdale

    Google Scholar 

  • Anderson JR (1991) The adaptive nature of human categorization. Psychol Rev 98:409–429

    Article  Google Scholar 

  • Anderson JR (2007) How can the human mind occur in the physical universe?. Oxford University Press, New York

    Book  Google Scholar 

  • Anderson JR, Milson R (1989) Human memory: an adaptive perspective. Psychol Rev 96:703–719

    Article  Google Scholar 

  • Bar-Eli M, Azar OH, Ritov I, Keidar-Levin Y, Schein G (2007) Action bias among elite soccer goalkeepers: the case of penalty kicks. J Econ Psychol 28:606–621

    Article  Google Scholar 

  • Bonawitz E, Denison S, Griffiths TL, Gopnik A (2014) Probabilistic models, learning algorithms, and response variability: sampling in cognitive development. Trends Cogn Sci 18:497–500

    Article  PubMed  Google Scholar 

  • Bowers JS, Davis CJ (2012) Bayesian just-so stories in psychology and neuroscience. Psychol Bull 138:389–414

    Article  PubMed  Google Scholar 

  • Chater N, Oaksford M (1999) Ten years of the rational analysis of cognition. Trends Cogn Sci 3:57–65

    Article  PubMed  Google Scholar 

  • Cohen H, Lefebvre C (2005) Handbook of categorization in cognitive science. Elsevier, Amsterdam [etc.]

    Google Scholar 

  • Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 42:393–405

    Article  Google Scholar 

  • Dagum P, Luby M (1993) Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif Intell 60:141–153

    Article  Google Scholar 

  • Danks D, Griffiths TL, Tenenbaum JB (2003) Dynamical causal learning. In: Becker S, Thrun S, Obermayer K (eds) Advances in neural information processing systems. MIT Press, Cambridge, pp 67–74

    Google Scholar 

  • David HA (1998) First (?) occurrence of common terms in probability and statistics–a second list, with corrections. Am Stat 52:36–40

    Google Scholar 

  • Daw ND, Courville AC, Dayan P (2008) Semi-rational models of conditioning: the case of trial order. In: Chater Nick, Oaksford Mike (eds) The probabilistic mind. Prospects for Bayesian cognitive science. Oxford University Press, Oxford

    Google Scholar 

  • Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York [etc.]

    Book  Google Scholar 

  • Draper D (1995) Inference and hierarchical modeling in the social sciences. J Educ Behav Stat 20:115–147

    Article  Google Scholar 

  • Ellsberg D (1961) Risk, ambiguity, and the savage axioms. Q J Econ 75:643–669

    Article  Google Scholar 

  • Endress AD (2013) Bayesian learning and the psychology of rule induction. Cognition 127:159–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–230

    Article  Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138

    Article  CAS  PubMed  Google Scholar 

  • Geisler WS (2003) Ideal observer analysis. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, pp 825–837

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Gelman A, Lee D, Guo J (2015) Stan: a probabilistic programming language for Bayesian inference and optimization. J Educ Behav Stat 40:530–543

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern analysis and machine intelligence. IEEE Trans PAMI 6:721–741

    Article  CAS  Google Scholar 

  • Gershman SJ, Blei DM (2012) A tutorial on Bayesian nonparametric models. J Math Psychol 56:1–12

    Article  Google Scholar 

  • Gershman SJ, Daw ND (2012) Perception, action and utility: the tangled skein. In: Rabinovich MI, Friston KJ, Varona P (eds) Principles of brain dynamics. Global state interactions. MIT Press, Cambridge, pp 293–312

    Google Scholar 

  • Gigerenzer G, Hoffrage U, Goldstein DG (2008) Fast and frugal heuristics are plausible models of cognition: reply to Dougherty, Franco-Watkins, and Thomas (2008). Psychol Rev 115:230–239

    Article  PubMed  Google Scholar 

  • Good IJ (1980) Some history of the hierarchical Bayesian methodology. Trabajos de Estadistica Y de Investigacion Operativa 31:489–519

    Article  Google Scholar 

  • Goodman ND, Ullman TD, Tenenbaum JB (2011) Learning a theory of causality. Psychol Rev 118:110–119

    Article  PubMed  Google Scholar 

  • Gopnik A (2008) The theory theory as an alternative to the innateness hypothesis. In: Antony LM, Hornstein N (eds) Chomsky and his critics. Blackwell Publishing Ltd, Hoboken, pp 238–254

    Google Scholar 

  • Gopnik A (2012) Scientific thinking in young children: theoretical advances, empirical research, and policy implications. Science 337:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Gopnik A, Glymour C, Sobel DM, Schulz LE, Kushnir T, Danks D (2004) A theory of causal learning in children: causal maps and Bayes nets. Psychol Rev 111:3–32

    Article  PubMed  Google Scholar 

  • Gopnik A, Wellman HM (2012) Reconstructing constructivism: causal models, Bayesian learning mechanisms, and the theory theory. Psychol Bull 138:1085–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc F Radar Signal Process 140:107–113

    Article  Google Scholar 

  • Goswami U (Hrsg) (2011) The Wiley-Blackwell handbook of childhood cognitive development. Wiley-Blackwell: Hoboken

  • Griffiths TL, Canini KR, Sanborn AN, Navarro D (2007) Unifying rational models of categorization via the hierarchical Dirichlet process. In: McNamara DS, Trafton JG (eds) Proceedings of the 29th Annual conference of the Cognitive Science Society. Erlbaum, Hillsdale, NJ, pp 323–328

  • Griffiths TL, Kemp C, Tenenbaum JB (2008) Bayesian models of cognition. In: Sun R (ed) The Cambridge handbook of computational psychology. Cambridge University Press, Cambridge, pp 59–100

    Chapter  Google Scholar 

  • Griffiths TL, Chater N, Kemp C, Perfors A, Tenenbaum JB (2010) Probabilistic models of cognition: exploring representations and inductive biases. Trends Cogn Sci 14:357–364

    Article  PubMed  Google Scholar 

  • Griffiths TL, Chater N, Norris D, Pouget A (2012) How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis (2012). Psychol Bull 138:415–422

    Article  PubMed  Google Scholar 

  • Grimmer J (2011) An introduction to bayesian inference via variational approximations. Polit Anal 19:32–47

  • Holyoak KJ, Cheng PW (2010) Causal learning and inference as a rational process: the new synthesis. Annu Rev Psychol 62:135–163

    Article  Google Scholar 

  • Huang Y, Rao Rajesh P N (2011) Predictive coding. WIREs Cogn Sci 2:580–593

    Article  Google Scholar 

  • Jones M, Love BC (2011) Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behav Brain Sci 34:169–188

    Article  PubMed  Google Scholar 

  • Kemp C, Perfors A, Tenenbaum JB (2004) Learning domain structures. In: Forbus K, Gentner D, Regier T (eds) Proceedings of the 26th annual conference of the cognitive science society. Lawrence Erlbaum Associates Inc, Mahwah, New Jersey, pp 720–725

  • Kemp C (2008) The acquisition of inductive constraints. Dissertation. Cambridge

  • Kemp C, Perfors A, Tenenbaum JB (2007a) Learning overhypotheses with hierarchical Bayesian models. Dev Sci 10:307–321

    Article  PubMed  Google Scholar 

  • Kemp C, Tenenbaum JB, Niyogi S, Griffiths TL (2010) A probabilistic model of theory formation. Cognition 114:165–196

    Article  PubMed  Google Scholar 

  • Kemp C, Goodman ND, Tenenbaum JB (2007b) Learning causal schemata. In: McNamara DS, Trafton JG (eds) Proceedings of the 29th annual conference of the cognitive science society. Erlbaum, Hillsdale, NJ, pp 389–394

  • Kruschke JK (2010) Doing Bayesian data analysis. A tutorial with R and BUGS. Academic Press, Burlington, MA

    Google Scholar 

  • Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22:79–86

    Article  Google Scholar 

  • Kwisthout J (2010) Two new notions of abduction in Bayesian networks. In: Proceedings of the 22nd Benelux conference on artificial intelligence, pp 82–89

  • Kwisthout J, van Rooij I (2013) Bridging the gap between theory and practice of approximate Bayesian inference. Cognitive Systems Research:Special Issue on ICCM2012 24:2–8

  • Kwisthout J, Wareham T, van Rooij I (2011) Bayesian intractability is not an ailment that approximation can cure. Cogn Sci 35:779–784

    Article  PubMed  Google Scholar 

  • Lee MD (2011) How cognitive modeling can benefit from hierarchical Bayesian models. Spec Issue Hierarchical Bayesian Models 55:1–7

    Google Scholar 

  • Lien Y, Cheng PW (2000) Distinguishing genuine from spurious causes: a coherence hypothesis. Cogn Psychol 40:87–137

    Article  CAS  PubMed  Google Scholar 

  • Lindley DV, Smith AFM (1972) Bayes estimates for the linear model. J R Stat Soc Ser B (Methodological) 34:1–41

    Google Scholar 

  • Love BC, Medin DL, Gureckis TM (2004) SUSTAIN: a network model of category learning. Psychol Rev 111:309–332

    Article  PubMed  Google Scholar 

  • Lu H, Yuille AL, Liljeholm M, Cheng PW, Holyoak KJ (2008) Bayesian generic priors for causal learning. Psychol Rev 115:955–984

    Article  PubMed  Google Scholar 

  • Lunn D, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS–a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Mansinghka V, Kemp C, Griffiths TL, Tenenbaum JB (2006) Structured priors for structure learning. In: Dechter R, Richardson T (eds) Proceedings of the twenty-second conference on uncertainty in artificial intelligence. AUAI Press, Arlington, Virginia, pp 324–331

  • Marcus GF (2010) Neither size fits all: comment on McClelland, et al and Griffiths et al. Trends Cogn Sci 14:346–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcus GF, Davis E (2013) How robust are probabilistic models of higher-level cognition? Psychol Sci 24:2351–2360

    Article  PubMed  Google Scholar 

  • Markson L, Diesendruck G, Bloom P (2008) The shape of thought. Dev Sci 11:204–208

    Article  PubMed  Google Scholar 

  • Marr D (1982) Vision: a computational investigation into the human representation and processing of visual information. MIT Press, Cambridge

    Google Scholar 

  • McClelland JL, Botvinick MM, Noelle DC, Plaut DC, Rogers TT, Seidenberg MS, Smith LB (2010) Letting structure emerge: connectionist and dynamical systems approaches to cognition. Trends Cogn Sci 14:348–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Milch B, Marthi B, Russell S, Sontag D, Ong DL, Kolobov A (2005) BLOG: probabilistic models with unknown objects. In: Proceedings of the 19th international joint conference on Artificial intelligence (IJCAI’05). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 1352–1359

  • Navarro DJ, Griffiths TL, Steyvers M, Lee MD (2006) Modeling individual differences using Dirichlet processes. Special Issue on Model Selection: Theoretical Developments and Applications Special Issue on Model Selection: Theoretical Developments and Applications 50:101–122

    Google Scholar 

  • Neal RM (2000) Markov chain sampling methods for Dirichlet process mixture models. J Comput Graph Stat 9:249–265

    Google Scholar 

  • Nosofsky RM (1986) Attention, similarity, and the identification-categorization relationship. J Exp Psychol Gen 115:39–61

    Article  CAS  PubMed  Google Scholar 

  • Oniśko A, Druzdzel MJ, Wasyluk H (2001) Learning Bayesian network parameters from small data sets: application of Noisy-OR gates. Int J Approx Reason 27:165–182

    Article  Google Scholar 

  • Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Perfors AF, Tenenbaum JB, Regier T (2006) Poverty of the stimulus? A rational approach. In: Sun R, Miyake N (eds) Proceedings of the 28th annual conference of the cognitive science society. Lawrence Erlbaum Associates Inc, Mahwah, New Jersey, pp 663–668

  • Perfors A, Tenenbaum JB, Griffiths TL, Xu F (2011) A tutorial introduction to Bayesian models of cognitive development. Probab Models Cogn Dev 120:302–321

    Google Scholar 

  • Plummer M (2003) JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Hornik K, Leisch F, Zeileis A (ed) Proceedings of the 3rd international workshop on distributed statistical computing, pp 125–134

  • Pouget A, Beck JM, Ma WJ, Latham PE (2013) Probabilistic brains: knowns and unknowns. Nat Neurosci 16:1170–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross BH, Makin VS (1999) Prototype versus exemplar models in cognition. In: Sternberg RJ (ed) The nature of cognition. MIT Press, Cambridge, MA, pp 205–241

    Google Scholar 

  • Sakamoto Y, Jones M, Love B (2008) Putting the psychology back into psychological models: Mechanistic versus rational approaches. Memory Cogn 36:1057–1065

    Article  Google Scholar 

  • Sanborn AN, Griffiths TL, Navarro DJ (2010) Rational approximations to rational models: alternative algorithms for category learning. Psychol Rev 117:1144–1167

    Article  PubMed  Google Scholar 

  • Schmidt LA, Kemp C, Tenenbaum JB (2006) Nonsense and Sensibility: Inferring Unseen Possibilities. In: Sun R, Miyake N (eds) Proceedings of the 28th Annual Conference of the Cognitive Science Society. Lawrence Erlbaum Associates Inc, Mahwah, New Jersey, pp 744–749

  • Schulz L (2012) The origins of inquiry: inductive inference and exploration in early childhood. Trends Cogn Sci 16:382–389

    Article  PubMed  Google Scholar 

  • Shimony SE (1994) Finding MAPs for belief networks is NP-hard. Artif Intell 68:399–410

    Article  Google Scholar 

  • Sim ZL, Yuan S, Xu F (2011) Acquiring Word Learning Biases. In: Carlson L, Hoelscher C, Shipley TF (eds) Proceedings of the 33th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin, TX, pp 2544–2549

  • Smith JD, Minda JP (1998) Prototypes in the mist: the early epochs of category learning. J Exp Psychol Learn Memory Cogn 24:1411–1436

    Article  Google Scholar 

  • Smith LB, Jones SS, Landau B, Gershkoff-Stowe L, Samuelson L (2002) Object Name Learning Provides On-the-Job Training for Attention. Psychol Sci 13:13–19

    Article  PubMed  Google Scholar 

  • Soja NN, Carey S, Spelke ES (1991) Ontological categories guide young children’s inductions of word meaning: Object terms and substance terms. Cognition 38:179–211

    Article  CAS  PubMed  Google Scholar 

  • Teh YW (2010) Dirichlet process. In: Sammut C, Webb G (eds) Encyclopedia of machine learning. Springer, US, pp 280–287

  • Teh YW, Jordan MI, Beal MJ, Blei DM (2004) Sharing Clusters among Related Groups: Hierarchical Dirichlet Processes. In: Saul LK, Weiss Y, Bottou L (ed) Advances in Neural Information Processing Systems 17. Proceedings of the 2004 Conference. MIT Press, Cambridge, MA, pp 1385–1392

  • Teh YW, Jordan MI, Beal MJ, Blei DM (2006) Hierarchical dirichlet processes. J Am Stat Assoc 101:1566–1581

    Article  CAS  Google Scholar 

  • Tenenbaum JB, Griffiths TL, Kemp C (2006) Theory-based Bayesian models of inductive learning and reasoning. Special issue: Probabilistic models of cognition 10:309–318

    Google Scholar 

  • Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to Grow a Mind: Statistics, Structure, and Abstraction. Science 331:1279–1285

    Article  CAS  PubMed  Google Scholar 

  • Thomson R, Lebiere C (2013) Constraining Bayesian inference with cognitive architectures: an updated associative learning mechanism in ACT-R. In: Knauf Markus, Pauen Michael, Sebanz Natalie, Wachsmuth Ipke (eds) Proceedings of the 35th Annual Meeting of the Cognitive Science Society. Cognitive Science Society, Austin, TX, pp 3539–3544

  • Tversky A, Kahneman D (1983) Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychol Rev 90:293–315

    Article  Google Scholar 

  • West R, Stanovich K (2003) Is probability matching smart? Associations between probabilistic choices and cognitive ability. Memory Cogn 31:243–251

    Article  Google Scholar 

  • Wills AJ, Pothos EM (2012) On the adequacy of current empirical evaluations of formal models of categorization. Psychol Bull 138:102–125

    Article  PubMed  Google Scholar 

  • Xu F, Tenenbaum JB (2007) Word learning as Bayesian inference. Psychol Rev 114:245–272

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their insightful advice and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Glassen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glassen, T., Nitsch, V. Hierarchical Bayesian models of cognitive development. Biol Cybern 110, 217–227 (2016). https://doi.org/10.1007/s00422-016-0686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0686-6

Keywords

Navigation