Skip to main content
Log in

You cannot speak and listen at the same time: a probabilistic model of turn-taking

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Turn-taking is a preverbal skill whose mastering constitutes an important precondition for many social interactions and joint actions. However, the cognitive mechanisms supporting turn-taking abilities are still poorly understood. Here, we propose a computational analysis of turn-taking in terms of two general mechanisms supporting joint actions: action prediction (e.g., recognizing the interlocutor’s message and predicting the end of turn) and signaling (e.g., modifying one’s own speech to make it more predictable and discriminable). We test the hypothesis that in a simulated conversational scenario dyads using these two mechanisms can recognize the utterances of their co-actors faster, which in turn permits them to give and take turns more efficiently. Furthermore, we discuss how turn-taking dynamics depend on the fact that agents cannot simultaneously use their internal models for both action (or messages) prediction and production, as these have different requirements—or, in other words, they cannot speak and listen at the same time with the same level of accuracy. Our results provide a computational-level characterization of turn-taking in terms of cognitive mechanisms of action prediction and signaling that are shared across various interaction and joint action domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bell A, Jurafsky D, Fosler-Lussier E, Girand C, Gregory M, Gildea D (2003) Effects of disfluencies, predictability, and utterance position on word form variation in english conversation. The Journal of the Acoustical Society of America 113(2):1001–1024

    Article  PubMed  Google Scholar 

  2. Berkes P, Orban G, Lengyel M, Fiser J (2011) Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331(6013):83–87. doi:10.1126/science.1195870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bishop CM (2006) Pattern Recognition and Machine Learning. Springer

  4. Brand RJ, Baldwin DA, Ashburn LA (2002) Evidence for motionese: modifications in mothers’ infant-directed action. Developmental Science 5(1):72–83. doi:10.1111/1467-7687.00211

    Article  Google Scholar 

  5. Brand RJ, Shallcross WL (2008) Infants prefer motionese to adult-directed action. Dev Sci 11(6):853–861. doi:10.1111/j.1467-7687.2008.00734.x

    Article  PubMed  Google Scholar 

  6. Brown PM, Dell GS (1987) Adapting production to comprehension: The explicit mention of instruments. Cognitive Psychology 19(4):441–472

    Article  Google Scholar 

  7. Buesing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol 7(11):e1002,211

    Article  CAS  Google Scholar 

  8. Butz MV (2016) Toward a Unified Sub-symbolic Computational Theory of Cognition. Front Psychol 7:925. doi:10.3389/fpsyg.2016.00925

  9. Candidi M, Curioni A, Donnarumma F, Sacheli LM, Pezzulo G (2015) Interactional leader-follower sensorimotor communication strategies during repetitive joint actions. J Royal Soc Interface 12(110). doi:10.1098/rsif.2015.0644

  10. Casillas M (2014) Turn-taking. In: Pragmatic development in first language acquisition, pp. 53–70. Benjamins

  11. Chatzis SP, Demiris Y (2011) Echo state gaussian process. IEEE Trans Neural Netw 22(9):1435–1445. doi:10.1109/TNN.2011.2162109

    Article  PubMed  Google Scholar 

  12. Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45(5):801–814

    Article  CAS  PubMed  Google Scholar 

  13. Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298. doi:10.1146/annurev.neuro.051508.135409

    Article  CAS  PubMed  Google Scholar 

  14. Clark HH (1996) Using Language. Cambridge University Press

  15. Clark HH, Murphy GL (1982) Audience Design in Meaning and Reference. In: J.F. LeNy, W. Kintsch (eds.) Language and Comprehension, Advances in Psychology, vol. 9, pp. 287–299. North-Holland, Amsterdam (1982). doi:10.1016/s0166-4115(09)60059-5

  16. Csibra G, Gergely G (2009) Natural pedagogy. Trends Cogn Sci 13(4):148–153. doi:10.1016/j.tics.2009.01.005

    Article  PubMed  Google Scholar 

  17. D’Ausilio A, Badino L, Li Y, Tokay S, Craighero L, Canto R, Aloimonos Y, Fadiga L (2012) Leadership in orchestra emerges from the causal relationships of movement kinematics. PLoS One 7(5):e35,757. doi:10.1371/journal.pone.0035757

    Article  Google Scholar 

  18. De Ruiter JP, Mitterer H, Enfield NJ (2006) Projecting the end of a speaker’s turn: A cognitive cornerstone of conversation. Language 82(3):515–535

    Article  Google Scholar 

  19. Demiris Y, Khadhouri B (2005) Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal 54:361–369

    Article  Google Scholar 

  20. Dindo H, Donnarumma F, Chersi F, Pezzulo G (2015) The intentional stance as structure learning: a computational perspective on mindreading. Biol Cybern 109(4–5):453–467. doi:10.1007/s00422-015-0654-6

    Article  PubMed  Google Scholar 

  21. Dindo H, Zambuto D, Pezzulo G (2011) Motor simulation via coupled internal models using sequential monte carlo. Proceedings of IJCAI 2011:2113–2119

    Google Scholar 

  22. Donnarumma F, Costantini M, Ambrosini E, Friston K, Pezzulo G (2017) Action perception as hypothesis testing. Cortex 89:45–60. doi:10.1016/j.cortex.2017.01.016

  23. Donnarumma F, Dindo H, Pezzulo G (2017) Sensorimotor coarticulation in the execution and recognition of intentional actions. Front Psychol 8:237. doi:10.3389/fpsyg.2017.00237

  24. Donnarumma F, Maisto D, Pezzulo G (2016) Problem solving as probabilistic inference with subgoaling: Explaining human successes and pitfalls in the tower of hanoi. PLoS Comput Biol 12(4):e1004,864. doi:10.1371/journal.pcbi.1004864

    Article  Google Scholar 

  25. Donnarumma F, Prevete R, Chersi F, Pezzulo G (2015) A Programmer-Interpreter neural network architecture for prefrontal cognitive control. J Neural System 25(6):1550017. doi:10.1142/S0129065715500173

  26. Doucet A, De Freitas N, Gordon N (2001) An introduction to sequential monte carlo methods. In: Sequential Monte Carlo methods in practice, pp. 3–14. Springer

  27. Doucet A, Godsill S, Andrieu C (2000) On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing 10(3):197–208

    Article  Google Scholar 

  28. Doya K, Ishii S, Pouget A, Rao RPN (eds) (2007) Bayesian Brain: Probabilistic Approaches to Neural Coding, 1st edn. The MIT Press

  29. Duncan S (1972) Some signals and rules for taking speaking turns in conversations. Journal of personality and social psychology 23(2):283

  30. Ferreira VS, Dell GS (2000) Effect of ambiguity and lexical availability on syntactic and lexical production. Cognitive psychology 40(4):296–340

    Article  CAS  PubMed  Google Scholar 

  31. Fiser J, Berkes P, Orbán G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn Sci 14(3):119–130. doi:10.1016/j.tics.2010.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  32. Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biol 13(2):146–150

    Article  CAS  PubMed  Google Scholar 

  33. Frank MC, Goodman ND, Tenenbaum JB (2009) Using speakers’ referential intentions to model early cross-situational word learning. Psychological Science 20(5):578–585. doi:10.1111/j.1467-9280.2009.02335.x

    Article  PubMed  Google Scholar 

  34. Friston K (2008) Hierarchical models in the brain. PLoS Computational Biology 4(11):e1000,211

    Article  Google Scholar 

  35. Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11(2):127–138. doi:10.1038/nrn2787

    Article  CAS  PubMed  Google Scholar 

  36. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O’Doherty J, Pezzulo G (2016) Active inference and learning. Neurosci Biobehav Rev 68:862–879. doi:10.1016/j.neubiorev.2016.06.022

  37. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G (2016) Active inference: A process theory. Neural Comput 29(1):1–49 doi:10.1162/NECO_a_00912

  38. Friston K, Frith C (2015) A duet for one. Consciousness and cognition

  39. Friston K, Mattout J, Kilner J (2011) Action understanding and active inference. Biol Cybern 104(1–2):137–160. doi:10.1007/s00422-011-0424-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern 102(3):227–260. doi:10.1007/s00422-010-0364-z

    Article  PubMed  Google Scholar 

  41. Friston KJ, Frith CD (2015) Active inference, communication and hermeneutics. Cortex 68, 129-143. http://dx.doi.org/10.1016/j.cortex.2015.03.025

  42. Gambi C, Pickering MJ (2011) A cognitive architecture for the coordination of utterances. Front Psychol 2:275. doi:10.3389/fpsyg.2011.00275

    Article  PubMed  PubMed Central  Google Scholar 

  43. Garrod S, Pickering MJ (2004) Why is conversation so easy? Trends Cogn Sci 8(1):8–11

    Article  PubMed  Google Scholar 

  44. Garrod S, Pickering MJ (2015) The use of content and timing to predict turn transitions. Frontiers in psychology 6:751

    Article  PubMed  PubMed Central  Google Scholar 

  45. Glenberg AM, Gallese V (2011) Action-based language: A theory of language acquisition, comprehension, and production. Cortex 48(7):905–922. doi:10.1016/j.cortex.2011.04.010

    Article  PubMed  Google Scholar 

  46. Heldner M (2011) Detection thresholds for gaps, overlaps, and no-gap-no-overlaps. J Acoust Soc Am 130(1):508–513

    Article  PubMed  Google Scholar 

  47. Heldner M, Edlund J (2010) Pauses, gaps and overlaps in conversations. Journal of Phonetics 38(4):555–568

    Article  Google Scholar 

  48. Heldner M, Edlund J, Hjalmarsson A, Laskowski K (2011) Very short utterances and timing in turn-taking. In: INTERSPEECH, pp. 2837–2840

  49. von Hofsten C (2004) An action perspective on motor development. Trends in Cognitive Science 8(6):266–272

    Article  Google Scholar 

  50. Ivry RB, Richardson TC (2002) Temporal control and coordination: the multiple timer model. Brain and cognition 48(1):117–132

    Article  PubMed  Google Scholar 

  51. Jaffe J, Beebe B, Feldstein S, Crown CL, Jasnow MD, Rochat P, Stern DN (2001) Rhythms of dialogue in infancy: Coordinated timing in development. Monographs of the society for research in child development pp. i–149

  52. Jeannerod M (2006) Motor Cognition. Oxford University Press

  53. Jerde TE, Soechting JF, Flanders M (2003) Coarticulation in fluent fingerspelling. J Neurosci 23(6):2383–2393

    CAS  PubMed  Google Scholar 

  54. Jonsdottir GR, Thorisson KR, Nivel E (2008) Learning smooth, human-like turntaking in realtime dialogue. In: In Proceedings of Intelligent Virtual Agents (IVA 08, pp. 162–175. Springer

  55. Kawato M (1999) Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9:718–27

    Article  CAS  PubMed  Google Scholar 

  56. Keitel A, Daum MM (2015) The use of intonation for turn anticipation in observed conversations without visual signals as source of information. Front Psychol 6:108. doi:10.3389/fpsyg.2015.00108

    Article  PubMed  PubMed Central  Google Scholar 

  57. Keller PE, Knoblich G, Repp BH (2007) Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious Cogn 16(1):102–111. doi:10.1016/j.concog.2005.12.004

    Article  PubMed  Google Scholar 

  58. Kilner J, Paulignan Y, Blakemore S (2003) An interference effect of observed biological movement on action. Current Biology 13:522–525

    Article  CAS  PubMed  Google Scholar 

  59. Kilner JM, Friston KJ, Frith CD (2007) Predictive coding: An account of the mirror neuron system. Cognitive Processing 8(3):159–166

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kording K, Wolpert D (2006) Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10:319–326

    Article  PubMed  Google Scholar 

  61. Kose-Bagci H, Dautenhahn K, Nehaniv CL (2008) Emergent dynamics of turn-taking interaction in drumming games with a humanoid robot. In: Robot and Human Interactive Communication, 2008. RO-MAN 2008. The 17th IEEE International Symposium on, pp. 346–353. IEEE

  62. Kroger BJ, Kopp S, Lowit A (2009) A model for production, perception, and acquisition of actions in face-to-face communication. Cogn Process. doi:10.1007/s10339-009-0351-2

  63. Kuhl PK, Andruski JE, Chistovich IA, Chistovich LA, Kozhevnikova EV, Ryskina VL, Stolyarova EI, Sundberg U, Lacerda F (1997) Cross-language analysis of phonetic units in language addressed to infants. Science 277(5326):684–686

    Article  CAS  PubMed  Google Scholar 

  64. Leibfried F, Grau-Moya J, Braun DA (2015) Signaling equilibria in sensorimotor interactions. Cognition 141, 73–86. http://dx.doi.org/10.1016/j.cognition.2015.03.008

  65. Levinson SC (2006) On the human “interaction engine”. In: Enfield NJ, Levinson SC (eds) Roots of human sociality: Culture, cognition and interaction. Berg, Oxford, pp 39–69

    Google Scholar 

  66. Levinson SC (2016) Turn-taking in human communication-origins and implications for language processing. Trends in cognitive sciences 20(1):6–14

    Article  PubMed  Google Scholar 

  67. Lieberman P (1963) Some effects of semantic and grammatical context on the production and perception of speech. Language and speech 6(3):172–187

    Google Scholar 

  68. Lindblom B (1990) Explaining phonetic variation: A sketch of the h&h theory. In: Speech production and speech modelling, pp. 403–439. Springer

  69. Magyari L, de Ruiter JP (2012) Prediction of turn-ends based on anticipation of upcoming words. Front Psychol 3:376. doi:10.3389/fpsyg.2012.00376

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maisto D, Donnarumma F, Pezzulo G (2016) Nonparametric problem-space clustering: Learning efficient codes for cognitive control tasks. Entropy 18(2):61

    Article  Google Scholar 

  71. Moore RK (2007) Presence: A human-inspired architecture for speech-based human-machine interaction. IEEE Trans. Computers 56(9):1176–1188

    Article  Google Scholar 

  72. Mörtl A, Lorenz T, Vlaskamp BN, Gusrialdi A, Schubö A, Hirche S (2012) Modeling inter-human movement coordination: synchronization governs joint task dynamics. Biological Cybernetics 106(4–5):241–259. doi:10.1007/s00422-012-0492-8

    Article  PubMed  Google Scholar 

  73. Murphy KP (2002) Dynamic bayesian networks: representation, inference and learning. Ph.D. thesis, UC Berkeley, Computer Science Division

  74. Noordzij ML, Newman-Norlund SE, de Ruiter JP, Hagoort P, Levinson SC, Toni I (2009) Brain mechanisms underlying human communication. Front Hum Neurosci 3:14. doi:10.3389/neuro.09.014.2009

    Article  PubMed  PubMed Central  Google Scholar 

  75. Noordzij ML, Newman-Norlund SE, de Ruiter JP, Hagoort P, Levinson SC, Toni I (2010) Neural correlates of intentional communication. Front Neurosci 4:188. doi:10.3389/fnins.2010.00188

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ognibene D, Demiris Y (2013) Towards active event perception. In: Proceedings of the 23rd International Joint Conference of Artificial Intelligence (IJCAI 2013)

  77. Ortega PA, Braun DA (2013) Thermodynamics as a theory of decision-making with information-processing costs. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 469(2153)

  78. Pezzulo G (2011) Shared representations as coordination tools for interactions. Review of Philosophy and Psychology 2(2):303–333

    Article  Google Scholar 

  79. Pezzulo G (2012) The interaction engine: a common pragmatic competence across linguistic and non-linguistic interactions. IEEE Transactions on Autonomous Mental Development 4(2):105–123

    Article  Google Scholar 

  80. Pezzulo G (2013) Studying mirror mechanisms within generative and predictive architectures for joint action. Cortex 49:2968–2969

    Article  PubMed  Google Scholar 

  81. Pezzulo G (2017) Tracing the roots of cognition in predictive processing. In: Metzinger T, Wiese W (Eds) Philosophy and Predictive Processing: 20. Frankfurt am Main: MIND Group

  82. Pezzulo G, Cisek P (2016) Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends Cogn Sci 20(6):414–424. doi:10.1016/j.tics.2016.03.013

    Article  PubMed  Google Scholar 

  83. Pezzulo G, Dindo H (2011) What should i do next? using shared representations to solve interaction problems. Experimental Brain Research 211(3):613–630

    Article  PubMed  Google Scholar 

  84. Pezzulo G, Dindo H (2013) Intentional strategies that make co-actors more predictable: the case of signaling. Behavioral and Brain Sciences 36(4):43–44

    Article  Google Scholar 

  85. Pezzulo G, Donnarumma F, Dindo H (2013) Human sensorimotor communication: A theory of signaling in online social interactions. PLoS ONE 8(11):e79,876

    Article  Google Scholar 

  86. Pezzulo G, Iodice P, Donnarumma F, Dindo H, Knoblich G (2017) Avoiding accidents at the champagne reception: A study of joint lifting and balancing. Psychol Sci. doi:10.1177/0956797616683015

  87. Pezzulo G, Iodice P, Ferraina S, Kessler K (2013) Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action. Front Hum Neurosci 7:800. doi:10.3389/fnhum.2013.00800

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pickering MJ, Garrod S (2007) Do people use language production to make predictions during comprehension? Trends in Cognitive Sciences 11(3):105–110

    Article  PubMed  Google Scholar 

  89. Pickering MJ, Garrod S (2013) An integrated theory of language production and comprehension. Behavioral and Brain Sciences

  90. Pulvermüller F, Fadiga L (2010) Active perception: sensorimotor circuits as a cortical basis for language. Nature Reviews Neuroscience 11(5):351–360

    Article  PubMed  Google Scholar 

  91. Revel A, Andry P (2009) Emergence of structured interactions: From a theoretical model to pragmatic robotics. Neural networks 22(2):116–125

    Article  CAS  PubMed  Google Scholar 

  92. Sacheli LM, Tidoni E, Pavone EF, Aglioti SM, Candidi M (2013) Kinematics fingerprints of leader and follower role-taking during cooperative joint actions. Exp Brain Res. doi:10.1007/s00221-013-3459-7

  93. Sacks H, Schegloff EA, Jefferson G (1974) A simplest systematics for the organisation of turn-taking for conversation. Language 50:696–735

    Article  Google Scholar 

  94. Sanborn AN (2015) Types of approximation for probabilistic cognition: sampling and variational. Brain and cognition

  95. Sanborn AN, Chater N (2016) Bayesian brains without probabilities. Trends in Cognitive Sciences 20(12):883–893

    Article  PubMed  Google Scholar 

  96. Schegloff EA (2006) Interaction: The infrastructure for social institutions, the natural ecological niche for language, and the arena in which culture is enacted. In: Enfield NJ, Levinson SC (eds) Roots of Human Sociality: Culture. Cognition and Interaction. Oxford, Berg

  97. Sebanz N, Bekkering H, Knoblich G (2006) Joint action: bodies and minds moving together. Trends Cogn Sci 10(2):70–76. doi:10.1016/j.tics.2005.12.009

    Article  PubMed  Google Scholar 

  98. Sebanz N, Knoblich G (2009) Prediction in joint action: What, when, and where. Topics in Cognitive Science 1:353–367

    Article  PubMed  Google Scholar 

  99. Shafto P, Goodman ND, Griffiths TL (2014) A rational account of pedagogical reasoning: teaching by, and learning from, examples. Cogn Psychol 71:55–89. doi:10.1016/j.cogpsych.2013.12.004

    Article  PubMed  Google Scholar 

  100. Stivers T, Enfield NJ, Brown P, Englert C, Hayashi M, Heinemann T, Hoymann G, Rossano F, de Ruiter JP, Yoon KE, Levinson SC (2009) Universals and cultural variation in turn-taking in conversation. Proc Natl Acad Sci U S A 106(26):10587–10592. doi:10.1073/pnas.0903616106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stoianov I, Genovesio A, Pezzulo G (2016) Prefrontal goal-codes emerge as latent states in probabilistic value learning. Journal of Cognitive Neuroscience 28(1):140–157

    Article  PubMed  Google Scholar 

  102. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: statistics, structure, and abstraction. Science 331(6022):1279–1285. doi:10.1126/science.1192788

    Article  CAS  PubMed  Google Scholar 

  103. Thorisson KR (2002) Multimodality in language and speech systems. In: B. Granström, D. House, I. Karlsson (eds.) Multimodality in Language and Speech Systems, chap. Natural turn-taking needs no manual: computational theory and model, from perception to actions, pp. 173–207. Kluwer Academic Publishers, Dordrecht, The Netherlands. http://xenia.media.mit.edu/%7Ekris/ftp/CompModTurnTak

  104. Vesper C, Richardson MJ (2014) Strategic communication and behavioral coupling in asymmetric joint action. Exp Brain Res. doi:10.1007/s00221-014-3982-1

  105. Vesper C, van der Wel RPRD, Knoblich G, Sebanz N (2011) Making oneself predictable: reduced temporal variability facilitates joint action coordination. Exp Brain Res 211(3–4):517–530. doi:10.1007/s00221-011-2706-z

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vul E, Goodman N, Griffiths TL, Tenenbaum JB (2014) One and done? optimal decisions from very few samples. Cognitive science 38(4):599–637

    Article  PubMed  Google Scholar 

  107. Warlaumont AS, Richards JA, Gilkerson J, Oller DK (2014) A social feedback loop for speech development and its reduction in autism. Psychological science p. 0956797614531023

  108. Wilson M, Wilson TP (2005) An oscillator model of the timing of turn-taking. Psychon Bull Rev 12(6):957–968

    Article  PubMed  Google Scholar 

  109. Wlodarczak M, Simko J, Wagner P (2013) Pitch and duration as a basis for entrainment of overlapped speech onsets. Proceedings of Interspeech 2013

  110. Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B Biol Sci 358(1431):593–602. doi:10.1098/rstb.2002.1238

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Networks 11(7–8):1317–1329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors want to thank two anonymous reviewers for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pezzulo.

Additional information

The research leading to these results has received funding from the European Union Seventh Framework Programme, Grant No. FP7-270108 (Goal-Leaders) to GP. The GEFORCE Titan used for this research was donated by the NVIDIA Corporation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donnarumma, F., Dindo, H., Iodice, P. et al. You cannot speak and listen at the same time: a probabilistic model of turn-taking. Biol Cybern 111, 165–183 (2017). https://doi.org/10.1007/s00422-017-0714-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-017-0714-1

Keywords

Navigation