Abstract
Adapting motor output based on environmental forces is critical for successful locomotion in the real world. Arthropods use at least two neural mechanisms to adjust muscle activation while walking based on detected forces. Mechanism 1 uses negative feedback of leg depressor force to ensure that each stance leg supports an appropriate amount of the body’s weight. Mechanism 2 encourages searching for ground contact if the leg supports no body weight. We expand the neural controller for MantisBot, a robot based upon a praying mantis, to include these mechanisms by incorporating leg-local memory and command neurons, as observed in arthropods. We present results from MantisBot transitioning between searching and stepping, mimicking data from animals as reported in the literature.







Similar content being viewed by others
References
Akay T, Bässler U, Gerharz P, Büschges A (2001) The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. J Neurophysiol 85(2):594
Akay T, Haehn S, Schmitz J, Büschges A (2004) Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. J Neurophysiol 92(1):42–51. doi:10.1152/jn.01271.2003
Bässler U, Rohrbacher J, Karg G, Breutel G (1991) Interruption of searching movements of partly restrained front legs of stick insects, a model situation for the start of a stance phase? Biol Cybern 65(6):507–514. doi:10.1007/BF00204664
Bender JA, Pollack AJ, Ritzmann RE (2010) Neural activity in the central complex of the insect brain is linked to locomotor changes. Curr Biol 20(10):921–926
Berg E, Büschges A, Schmidt J (2013) Single perturbations cause sustained changes in searching behavior in stick insects. J Exp Biol 216(6):1064–1074. doi:10.1242/jeb.076406
Berg EM, Hooper SL, Schmidt J, Büschges A (2015) A leg-local neural mechanism mediates the decision to search in stick insects. Curr Biol 25(15):2012–2017. doi:10.1016/j.cub.2015.06.017
Bidaye SS, Machacek C, Wu Y, Dickson BJ (2014) Neuronal control of Drosophila walking direction. Science 344(6179):97–101. doi:10.1126/science.1249964
Bläsing B, Cruse H (2004) Mechanisms of stick insect locomotion in a gap-crossing paradigm. J Comp Physiol A 190(3):173–183. doi:10.1007/s00359-003-0482-3
Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29(9):2972–2983. doi:10.1523/JNEUROSCI.3155-08.2009
Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198(Pt 2):435–456
Buschmann T, Ewald A, Twickel AV, Büschges A (2015) Controlling legs for locomotion—insights from robotics and neurobiology. Bioinspir Biomim 10(4):41,001. doi:10.1088/1748-3190/10/4/041001
Cofer DW, Cymbalyuk G, Reid J, Zhu Y, Heitler WJ, Edwards DH (2010) AnimatLab: a 3D graphics environment for neuromechanical simulations. J Neurosci Methods 187(2):280–8. doi:10.1016/j.jneumeth.2010.01.005
Cruse H (1976) The control of body position in the stick insect (Carausius morosus) when walking over uneven surfaces. Biol Cybern 24:25–33
Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13(1):15–21. doi:10.1016/0166-2236(90)90057-H
Dasgupta S, Goldschmidt D, Wörgötter F, Manoonpong P (2015) Distributed recurrent neural forward models with synaptic adaptation and CPG-based control for complex behaviors of walking robots. Front Neurorobot. doi:10.3389/fnbot.2015.00010
Daun-Gruhn S (2010) A mathematical modeling study of inter-segmental coordination during stick insect walking. J Comput Neurosci 30(2):255–278. doi:10.1007/s10827-010-0254-3
Daun-Gruhn S, Rubin JE, Rybak IA (2009) Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J Comput Neurosci 27(1):3–36. doi:10.1007/s10827-008-0124-4
Eisenstein EM (1972) Learning and memory in isolated insect ganglia. Adv Insect Physiol 9(C):111–181. doi:10.1016/S0065-2806(08)60276-3
Ekeberg Ö, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33(3):287–300. doi:10.1016/j.asd.2004.05.002
Fischer H, Schmidt J, Büschges A (2001) Pattern generation for walking and searching movements of a stick insect leg. I. Coordination of motor activity. J Neurophysiol 85(1):341–353
Fuchs E, Holmes P, Kiemel T, Ayali A (2011) Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits. Front Neural Circuits 4:125. doi:10.3389/fncir.2010.00125
Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S (2012) Quadrupedal gaits in hexapod animals—inter-leg coordination in free-walking adult stick insects. J Exp Biol 215(Pt 24):4255–66. doi:10.1242/jeb.073643
Hess D, Büschges A (1999) Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. J Neurophysiol 81(4):1856–1865
Johnston RM, Levine RB (1996) Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta. J Neurophysiol 76(5):3178–95
Knops SA, Tóth TI, Guschlbauer C, Gruhn M, Daun-Gruhn S (2012) A neuro-mechanical model for the neural basis of curve walking in the stick insect. J Neurophysiol. doi:10.1152/jn.00648.2012
Lévy J, Cruse H (2008) Controlling a system with redundant degrees of freedom: II. Solution of the force distribution problem without a body model. J Comp Physiol A 194(8):735–50. doi:10.1007/s00359-008-0348-9
Libersat F, Clarac F, Zill S (1987) Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. J Neurophysiol 57(5):1618–1637
Martin JP, Guo P, Mu L, Harley CM, Ritzmann RE (2015) Central-complex control of movement in the freely walking cockroach. Curr Biol 25(21):2795–2803. doi:10.1016/j.cub.2015.09.044
Möhl B (1988) Short-term learning during flight control in Locusta migratoria. J Comp Physiol A 163:803–812
Noah AJ, Quimby L, Frazier FS, Zill SN (2001) Force detection in cockroach walking reconsidered: discharges of proximal tibial campaniform sensilla when body load is altered. J Comp Physiol A Sens Neural Behav Physiol 187(10):769–784. doi:10.1007/s00359-001-0247-9
Noah JA, Quimby L, Frazier SF, Zill SN (2004) Walking on a ’peg leg’: extensor muscle activities and sensory feedback after distal leg denervation in cockroaches. J Comp Physiol A Sens Neural Behav Physiol 190(3):217–231. doi:10.1007/s00359-003-0488-x
Ritzmann RE, Quinn RD, Fischer MS (2004) Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Struct Dev 33(3):361–379. doi:10.1016/j.asd.2004.05.001
Ryckebusch S, Laurent G (1993) Rhythmic patterns evoked in locust leg motor neurons by the muscarinic agonist pilocarpine. J Neurophysiol 69(5):1583–95
Schmitz J, Gruhn M, Büschges A (2015) The role of leg touchdown for the control of locomotor activity in the walking stick insect. J Neurophysiol 113(7):2309–2320. doi:10.1152/jn.00956.2014
Smarandache-Wellmann CR (2016) Arthropod neurons and nervous system. Curr Biol 26(20):R960–R965. doi:10.1016/j.cub.2016.07.063
Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE (2014) A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus discoidalis. Biol Cybern 108(1):1–21. doi:10.1007/s00422-013-0573-3
Szczecinski NS, Chrzanowski DM, Cofer DW, Moore DR, Terrasi AS, Martin JP, Ritzmann RE, Quinn RD (2015) Mantisbot: a platform for investigating mantis behavior via real-time neural control. In: Biomimetic and biohybrid systems, vol 9222, pp. 175–186. Springer. doi:10.1007/978-3-319-22979-9_18
Szczecinski NS, Getsy AP, Martin JP, Ritzmann RE, Quinn RD (2017a) Mantisbot is a robotic model of visually guided motion in the praying mantis. Arthropod Struct Dev. doi:10.1016/j.asd.2017.03.001
Szczecinski NS, Hunt AJ, Quinn RD (2017b) Design process and tools for dynamic neuromechanical models and robot controllers. Biol Cybern. doi:10.1007/s00422-017-0711-4
Szczecinski NS, Hunt AJ, Quinn RD (2017c) A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front Neurorobot. doi:10.3389/fnbot.2017.00037
Tóth TI, Knops S, Daun-Gruhn S (2012) A neuromechanical model explaining forward and backward stepping in the stick insect. J Neurophysiol 107(12):3267–3280. doi:10.1152/jn.01124.2011
Zill SN, Chaudhry S, Büschges A, Schmitz J (2015) Force feedback reinforces muscle synergies in insect legs. Arthropod Struct Dev 44(July):1–13. doi:10.1016/j.asd.2015.07.001
Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33(3):273–86. doi:10.1016/j.asd.2004.05.005
Zill SN, Seyfarth EA (1996) Exoskeletal sensors for walking. Sci Am 275(1):86–90. doi:10.1038/scientificamerican0796-86
Author information
Authors and Affiliations
Corresponding author
Additional information
This article belongs to a Special Issue on Neural Coding.
This work was supported by NASA Space Technology Research Fellowship NNX12AN24H, as well as a GAANN Grant.
A Appendix
A Appendix
In our system, \(\hbox {d}V_s/\hbox {d}F = 20\) mV\(/2^{10} = 19.53 \times 10^{-3}\) mV; \(\hbox {d}F/\hbox {d}\theta = 326\) rad \(^{-1}\) (empirical); and \(\hbox {d}\theta /\hbox {d}V_\theta = 1.972\) rad / 20 mV = \(98.61 \times 10^{-3}\) rad/mV.
Rights and permissions
About this article
Cite this article
Szczecinski, N.S., Quinn, R.D. Leg-local neural mechanisms for searching and learning enhance robotic locomotion. Biol Cybern 112, 99–112 (2018). https://doi.org/10.1007/s00422-017-0726-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-017-0726-x