Skip to main content
Log in

Optimal time-varying postural control in a single-link neuromechanical model with feedback latencies

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Maintaining balance during quiet standing is a challenging task for the neural control mechanisms due to the inherent instabilities involved in the task. The feedback latencies and the lowpass characteristics of skeletal muscle add to the difficulty of regulating postural dynamics in real-time. Inverted-pendulum (IP) type robotic models have served as a popular paradigm to investigate control of postural balance. In this study, an in-depth neuromechanical postural control model is developed from physiological principles. The model comprises a single-segment IP robotic model, Hill-type muscle model, and proprioceptive feedback from the muscle spindle (MS) and golgi tendon organ (GTO). An optimal proportional-integral-derivative (PID) controller is proposed to realize effective postural control amid latencies in sensory feedback. The neural commands for postural stabilization are generated by a time-varying PID controller, tuned using linear quadratic regulator (LQR) principles. Computer simulations are used to assess the efficacy of the tuned PID-LQR controller. Sensitivity analysis of the controlled system shows a delay tolerance of 300ms. Preliminary empirical data in support of the mathematical model were obtained from perturbation experiments. The model response to perturbation torque, measured in terms of the center of mass (COM) excursion in the anterior-posterior (AP) direction, displays a high degree of correlation with the empirical data (\(\rho =0.91\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

The author would like to thank Dr. Gannon White at Colorado Mesa University and Sonya Swift for providing empirical data in support of model predictions, and Eeman Iqbal for help with drawing the figures presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamran Iqbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, K. Optimal time-varying postural control in a single-link neuromechanical model with feedback latencies. Biol Cybern 114, 485–497 (2020). https://doi.org/10.1007/s00422-020-00843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-020-00843-9

Keywords

Navigation