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Abstract Molecular fluctuations can lead to macroscopically observable effects. The ran-

dom gating of ion channels in the membrane of a nerve cell provides an important example.

The contributions of independent noise sources to the variability of action potential timing

has not previously been studied at the level of molecular transitions within a conductance-

based model ion-state graph. Here we study a stochastic Langevin model for the Hodgkin-

Huxley (HH) system based on a detailed representation of the underlying channel-state

Markov process, the “14× 28D model” introduced in (Pu and Thomas 2020, Neural Com-

putation). We show how to resolve the individual contributions that each transition in the ion

channel graph makes to the variance of the interspike interval (ISI). We extend the mean–

return-time (MRT) phase reduction developed in (Cao et al. 2020, SIAM J. Appl. Math) to

the second moment of the return time from an MRT isochron to itself. Because fixed-voltage

spike-detection triggers do not correspond to MRT isochrons, the inter-phase interval (IPI)

variance only approximates the ISI variance. We find the IPI variance and ISI variance agree

to within a few percent when both can be computed. Moreover, we prove rigorously, and

show numerically, that our expression for the IPI variance is accurate in the small noise

(large system size) regime; our theory is exact in the limit of small noise. By selectively

including the noise associated with only those few transitions responsible for most of the

ISI variance, our analysis extends the stochastic shielding (SS) paradigm (Schmandt and

Galán 2012, Phys. Rev. Lett.) from the stationary voltage-clamp case to the current-clamp

case. We show numerically that the SS approximation has a high degree of accuracy even

for larger, physiologically relevant noise levels. Finally, we demonstrate that the ISI vari-

ance is not an unambiguously defined quantity, but depends on the choice of voltage level

set as the spike-detection threshold. We find a small but significant increase in ISI variance,
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the higher the spike detection voltage, both for simulated stochastic HH data and for voltage

traces recorded in in vitro experiments. In contrast, the IPI variance is invariant with respect

to the choice of isochron used as a trigger for counting “spikes”.

Keywords Channel Noise · Stochastic Shielding · Phase Response Curve · Inter-spike-

interval · Neural Oscillators · Langevin Models

1 Introduction

Nerve cells communicate with one another, process sensory information, and control motor

systems through transient voltage pulses, or spikes. At the single-cell level, neurons exhibit

a combination of deterministic and stochastic behaviors. In the supra-threshold regime, the

regular firing of action potentials under steady current drive suggests limit cycle dynamics,

with the precise timing of voltage spikes perturbed by noise. Variability of action potential

timing persists even under blockade of synaptic connections, consistent with an intrinsi-

cally noisy neural dynamics arising from the random gating of ion channel populations, or

“channel noise” [73].

Understanding the molecular origins of spike time variability may shed light on several

phenomena in which channel noise plays a role. For example, microscopic noise can give

rise to a stochastic resonance behavior [54], and can contribute to cellular- and systems-

level timing changes in the integrative properties of neurons [12]. Jitter in spike times un-

der steady drive may be observed in neurons from the auditory system [22,24,37] as well

as in the cerebral cortex [34] and may play a role in both fidelity of sensory information

processing and in precision of motor control [58]. As a motivating example for this work,

channel noise is thought to underlie jitter in spike timing observed in cerebellar Purkinje

cells recorded in vitro from the “leaner mouse”, a P/Q-type calcium channel mutant with

profound ataxia [72]. Purkinje cells fire Na+action potentials spontaneously [32,33], and

may do so at a very regular rate [72], even in the absence of synaptic input (cf. Fig. 1 A and

C). Mutations in an homologous human calcium channel gene are associated with episodic

ataxia type II, a debilitating form of dyskinesia [46,48]. Previous work has shown that the

leaner mutation increases the variability of spontaneous action potential firing in Purkinje

cells [43,72] (Fig. 1 B and D). It has been proposed that increased channel noise akin to that

observed in the leaner mutant plays a mechanistic role in this human disease [72].

Despite its practical importance, a quantitative understanding of distinct molecular sources

of macroscopic timing variability remains elusive. Significant theoretical attention has been

paid to the variance of phase response curves and interspike interval (ISI) variability. Most

analytical studies are based on the integrate-and-fire model [7,30,71], except [13], which

perturbs the voltage of a conductance-based model with a white noise current rather than

through biophysically-based channel noise. Standard models of stochastic ion channel ki-

netics comprise hybrid stochastic systems. As illustrated in Fig. 2, the membrane potential

evolves deterministically, given the transmembrane currents; the currents are determined by

the ion channel state; the ion channel states fluctuate stochastically with opening and closing

rates that depend on the voltage [2,5,8,44]. This closed-loop nonlinear dynamical stochas-

tic system is difficult to study analytically, because of recurrent statistical dependencies of

the variables one with another. An important and well studied special case is fixed-voltage

clamp, which reduces the ion channel subsystem to a time invariant Markov process [56].

Under the more natural current clamp, the ion channel dynamics taken alone are no longer

Markovian, as they intertwine with current and voltage. A priori, it is challenging to draw
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Fig. 1: Somatic voltage recorded in vitro from intact Purkinje cells (cerebellar slice prepa-

ration) during spontaneous tonic firing, with synaptic input blocked. Recordings courtesy

of Dr. D. Friel. See §D for details. A: Sample voltage recordings from a wild type Purkinje

cell showing precise spontaneous firing with interspike interval (ISI) coefficient of vari-

ation (CV=standard deviation / mean ISI) of approximately 3.9%. B: Sample recordings

from Purkinje cells with leaner mutation in P/Q-type calcium channels showing twice the

variability in ISI (CV c. 30%). C, D: histogram of ISI for wild type and leaner mutation,

respectively. Bin width = 1 msec for each.

a direct connection between the variability of spike timing and molecular-level stochastic

events, such as the opening and closing of specific ion channels, as spike timing is a path-

wise property reflecting the effects of fluctuations accumulated around each orbit or cycle.

In [53] Schmandt and Galán introduced stochastic shielding as a fast, accurate approx-

imation scheme for stochastic ion channel models. Rather than simplifying the Markov

process by aggregating ion channel states, stochastic shielding reduces the complexity of

the underlying sample space by eliminating independent noise sources (corresponding to

individual directed edges in the channel state transition graph) that make minimal contri-

butions to ion channel state fluctuations. In addition to providing an efficient numerical

procedure, stochastic shielding leads to an edge importance measure [56] that quantifies the
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Fig. 2: Statistical dependencies among voltage (Vt), ionic currents (It), and ion channel

state (Xt) form a hybrid, or piecewise deterministic, stochastic model. A, B: Molecular

sodium (Na+) and potassium (K+) channel states for the Hodgkin-Huxley model. Filled

circles mark conducting states N4 and M31. Per capita transition rates for each directed

edge (αn, βn, αm, βm, αh and βh) are voltage dependent (cf. App. A). Directed edges

are numbered 1-8 (K+ channel) and 1-20 (Na+-channel), marked in small red numerals.

C: Voltage Vt at time t influences current It as well as the transition from channel state

X = [M00,M10, . . . ,M31, N0, N1, . . . , N4], at time t − 1 to time t. (For illustration we

assume discrete sampling at integer multiples of a nominal time step ∆t in arbitrary units.)

Channel state dictates the subsequent ionic current, which dictates the voltage increment.

Arrowheads (→) denote deterministic dependencies. T-connectives (⊥) denote statistical

dependencies.

contribution of the fluctuations arising along each directed edge to the variance of chan-

nel state occupancy (and hence the variance of the transmembrane current). The stochastic

shielding method then amounts to simulating a stochastic conductance-based model using

only the noise terms from the most important transitions. While the original, heuristic im-

plementation of stochastic shielding considered both current and voltage clamp scenarios

[53], subsequent mathematical analysis of stochastic shielding considered only the constant

voltage-clamp case [55,56].

In our previous work [47], we numerically estimated the contribution of each directed

edge in the transition graph (Fig. 2A,B) to the variance of ISIs. In this paper we provide, to

our knowledge, the first analytical treatment of the variability of spike timing under current
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clamp arising from the random gating of ion channels with realistic (Hodgkin-Huxley) kinet-

ics. Building on prior work [10,47,53,55,56], we study the variance of the transition times

among a family of Poincaré sections, the mean–return-time (MRT) isochrons investigated

by [59,10] that extend the notion of phase reduction to stochastic limit cycle oscillators.

We prove a theorem that gives the form of the variance, σ2
φ, of inter-phase-intervals (IPI)1

in the limit of small noise (equivalently, large channel number or system size), as a sum

of contributions σ2
φ,k from each directed edge k in the ion channel state transition graph

(Fig. 2A,B). The IPI variability involves several quantities: the per capita transition rates

αk along each transition, the mean-field ion channel population Mi(k) at the source node

for each transition, the stoichiometry (state-change) vector ζk for the kth transition, and the

phase response curve Z of the underlying limit cycle:

σ2
φ =

∑

k∈all edges

σ2
φ,k = ǫT 0

∑

k

E

(

αk(v(t))Mi(k)(t) (ζ
⊺

kZ(t))
2 dt

)

+O
(

ǫ2
)

,

in the limit as ǫ → 0+. Here T 0, v(t) and M(t) are the period, voltage, and ion channel

population vector of the deterministic limit cycle for ǫ = 0. By E we denote expectation with

respect to the stationary probability density for the Langiven model (cf. eqn. (3)). As detailed

below, we scale ǫ ∝ 1/
√
Ω where the system size Ω reflects the size of the underlying ion

channel populations.

Thus we are able to pull apart the distinct contribution of each independent source of

noise (each directed edge in the ion channel state transition graphs) to the variability of

timing. Figs. 11-12 illustrate the additivity of contributions from separate edges for small

noise levels. As a consequence of this linear decomposition, we can extend the stochastic

shielding approximation, introduced in [53] and rigorously analyzed under voltage clamp in

[56,55], to the current clamp case. Our theoretical result guarantees that, for small noise, we

can replace a full stochastic simulation with a more efficient simulation driven by noise from

only the most “important” transitions with negligible loss of accuracy. We find numerically

that the range of validity of the stochastic shielding approximation under current clamp

extends beyond the “small noise limit” to include physiologically relevant population sizes,

cf. Fig. 12.

The inter-phase-interval (IPI) is a mathematical construct closely related to, but distinct

from, the inter-spike-interval (ISI). The ISI, determined by the times at which the cell voltage

moves upward (say) through a prescribed voltage threshold vthresh, is directly observable

from experimental recordings – unlike the IPI. However, we note that both in experimental

data and in stochastic numerical simulations, the variance of the ISI is not insensitive to the

choice of voltage threshold, but increases monotonically as a function of vthresh (cf. Fig. 9).

In contrast, the variance of inter-phase-interval times is the same, regardless of which MRT

isochron is used to define the intervals. This invariance property gives additional motivation

for investigating the variance of the IPI.

The structure of the paper is as follows: In §2, we review the 14 × 28D Langevin

Hodgkin-Huxley model proposed in [47], and provide mathematical definitions of first pas-

sage times, interspike intervals, asymptotic phase functions, and iso-phase intervals for the

class of model we consider. In §3 we state the necessary assumptions and prove the small-

noise decomposition theorem. In §4 we compare the contributions of individual transitions

to both interspike interval variability and interphase interval variability, predicted from the

1 Equivalently, “iso-phase-intervals”: the time taken to complete one full oscillation, from a given isochron
back to the same isochron.
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decomposition theorem, against the results of numerical simulations. Section §5 discusses

the theoretical and practical limitations of our results.

2 Definitions, Notation and Terminology

In this section, we recall the notation and assumptions of the 14× 28D Langevin model for

the stochastic Hodgkin-Huxley system introduced in [47]. In addition, we will present defi-

nitions, notations and terminology that are necessary for the main result. We adopt the stan-

dard convention that uppercase symbols (e.g. V,M,N) represent random variables, while

corresponding lowercase symbols (e.g. v,m,n) represent possible realizations of the ran-

dom variables. Thus P(V ≤ v) is the probability that the random voltage V does not exceed

the value v. We set vectors in bold font and scalars in standard font.

2.1 The Langevin HH Model

For the HH kinetic scheme given in Fig. 2A-B (p. 4), we define the eight-component state

vector M for the Na+ gates, and the five-component state vector N for the K+ gates, re-

spectively, as

M = [M00,M10,M20,M30,M01,M11,M21,M31]
⊺ ∈ [0, 1]8 (1)

N = [N0, N1, N2, N3, N4]
⊺ ∈ [0, 1]5, (2)

where
∑3

i=0

∑1
j=0 Mij = 1 and

∑4
i=0 Ni = 1. The open probability for the Na+ channel

is M31, and is N4 for the K+ channel. Our previous paper [47] proposed a 14 × 28D

Langevin HH model. Here, we make the dependence of the channel noise on system size

(number of channels) explicit, by introducing a small parameter ǫ ∝ N−1
ion . We therefore

consider a one-parameter family of Langevin equations

dX = F(X)dt+
√
ǫG(X) dW(t) (3)

where we define the 14-component vector X = (V ;M;N) and dW(t) represents a Wiener

(Brownian motion) process. In the governing Langevin equation (3), the stochastic forcing

components in G dW are implicitly scaled by factors proportional to
√
ǫ, with effective

numbers of Mtot = Mref/ǫ sodium and Ntot = Nref/ǫ potassium channels. For comparison,

in their study of different Langevin models, Goldwyn and Shea-Brown considered a patch of

excitable membrane containing Mref = 6000 sodium channels and Nref = 1800 potassium

channels [23].

The deterministic part of the evolution equation F(X) =
[

dV
dt

; dM
dt

; dN
dt

]

is the same

as the mean-field dynamics, given by

C
dV

dt
= −ḡNaM8(V − VNa)− ḡKN5(V − VK)− gL(V − VL) + Iapp, (4)

dM

dt
= ANa(V )M, (5)

dN

dt
= AK(V )N. (6)

Here, C (µF/cm2) is the capacitance, Iapp (nA/cm2) is the applied current, the maximal

conductance is ḡion (mS/cm2), Vion (mV ) is the associated reversal potential, for ion ∈
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{Na,K}, and the ohmic leak current is gleak(V −Vleak). The voltage-dependent drift matrices
ANa and AK given by

ANa(V ) =























ANa(1) βm 0 0 βh 0 0 0
3αm ANa(2) 2βm 0 0 βh 0 0
0 2αm ANa(3) 3βm 0 0 βh 0
0 0 αm ANa(4) 0 0 0 βh

αh 0 0 0 ANa(5) βm 0 0
0 αh 0 0 3αm ANa(6) 2βm 0
0 0 αh 0 0 2αm ANa(7) 3βm

0 0 0 αh 0 0 αm ANa(8)























, (7)

AK(V ) =











AK(1) βn(V ) 0 0 0
4αn(V ) AK(2) 2βn(V ) 0 0

0 3αn(V ) AK(3) 3βn(V ) 0
0 0 2αn(V ) AK(4) 4βn(V )
0 0 0 αn(V ) AK(5)











, (8)

with diagonal elements

Aion(i) = −
∑

j : j 6=i

Aion(j, i), for ion ∈ {Na,K}.

The state-dependent noise coefficient matrix G is 14× 28 and can be written as

G =







01×20 01×8

SNa 08×8

05×20 SK






.

When simulating (3) we use free boundary conditions for the gating variables Mij and Ni

[42,45,47]. With free boundaries, some gating variables may make small, rare excursions

into negative values. To avoid inconsistencies we therefore use the absolute values |Mij |
and |Ni| when calculating the edge fluxes needed to construct the matrix G. The resulting

boundary effects are insignificant for all system sizes considered [42].

All parameters, transition rates, and the coefficient matrices SK and SNa are given in

Appendix A.

2.2 Stochastic Shielding

The stochastic shielding (SS) approximation was first introduced by Schmandt and Galán as

an efficient numerical procedure to simulate Markov processes using only those transitions

associated with observable states [53]. Analysis of the SS approximation leads to an edge im-

portance measure [56] that quantifies the contribution of the fluctuations arising along each

directed edge to the variance of channel state occupancy (and hence the variance of the trans-

membrane current) under voltage clamp. The stochastic shielding method then amounts to

simulating a stochastic conductance-based model using only the noise terms from the most

important transitions. While the original, heuristic implementation of stochastic shielding

considered both current and voltage clamp scenarios [53], subsequent mathematical analy-

sis of stochastic shielding considered only the constant voltage-clamp case [55,56].

In our previous work [47], we extended the SS approximation to the current clamp case,

where we numerically calculated the edge importance for all transitions in Fig. 2. Given

the matrix G and a list of the “most important” noise sources (columns of G) the stochastic

shielding approximation amounts to setting the columns excluded from the list equal to zero
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[47,56]. Within the framework of stochastic shielding, we may ask how each column of SK

and SNa contribute to the variability of stochastic trajectories generated by eq. (3).

In this paper, our main theorem gives a semi-analytical foundation for the edge-importance

measure under current clamp in terms of contributions to ISI variance. In §4, we will apply

the SS method to numerically test our theorem of the contribution from each edge to the ISI

variability under current clamp.

The next section defines first passage times and interspike intervals for general conductance-

based models, which are fundamental to our subsequent analysis.

2.3 First passage times and interspike intervals

Reversal potentials Vion for physiological ions are typically confined to the range ±150mV.

For the 4-D and the 14-D HH models, the reversal potentials for K+ and Na+ are -77mv

and +50mv respectively [14]. In Lemma 1, we establish that the voltage for conductance-

based model in eqn. (3) is bounded. Therefore we can find a voltage range [vmin, vmax] that is

forward invariant with probability 1, meaning that the probability of any sample path leaving

the range vmin ≤ V (t) ≤ vmax is zero. At the same time, the channel state distribution for

any channel with k states is restricted to a (k− 1)-dimensional simplex ∆k−1 ⊂ R
k, given

by y1 + . . .+ yk = 1, yi ≥ 0. Therefore, the phase space of any conductance-based model

of the form (3) may be restricted to a compact domain in finite dimensions.

Definition 1 We define the HH domain D to be

D ∆
= [vmin, vmax]×∆7 ×∆4

(9)

where ∆7 is the simplex occupied by the Na+channel states, and ∆4 is occupied by the

K+channel states.

We thus represent the “14-D” HH model in a reduced phase space of dimension 1+7+4=12.

Lemma 1 For a conductance-based model of the form (3), and for any fixed applied current

Iapp, there exist upper and lower bounds vmax and vmin such that trajectories with initial

voltage condition v ∈ [vmin, vmax] remain within this interval for all times t > 0, with

probability 1, regardless of the initial channel state, provided the gating variables satisfy

0 ≤ Mij ≤ 1 and 0 ≤ Ni ≤ 1.

Proof See App. C.

Remark 1 Lemma 1 implies that the per capita transition rates along a finite collection of

edges, {αk(v)}Kk=1 are bounded above by a constant αmax, as v ranges over vmin ≤ v ≤
vmax. This fact will help establish Theorem 1.

Interspike Intervals and First Passage Times

Figure 3 shows a voltage trajectory generated by the 14-D stochastic HH model, under

current clamp, with injected current in the range supporting steady firing. The regular peri-

odicity of the deterministic model vanishes in this case. Nevertheless, the voltage generates

spikes, which allows us to introduce a well defined series of spike times and inter-spike in-

tervals (ISIs). For example, we may select a reference voltage such as v = −20 mV, with

the property that within a neighborhood of this voltage, trajectories have strictly positive or

strictly negative derivatives (dV/dt) with high probability.
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Fig. 3: Example voltage trace for the 14-D stochastic HH model (eqn (3)). (A) Voltage trace

generated by the full 14-D stochastic HH model with Iapp=-10 nA; for other parameters see

§A. (B) Ensemble of voltage traces constructed by aligning traces with a voltage upcrossing

at V = −20 mV (blue star) for 651 cycles.

In [50], they suggested that the stochastic (Langevin) 4-D HH model has a unique in-

variant stationary joint density for the voltage and gating variables, as well as producing

a stationary point process of spike times. The ensemble of trajectories may be visualized

by aligning the voltage spikes (Figure 3b), and illustrates that each trace is either rapidly

increasing or else rapidly decreasing as it passes v = −20 mV.

In order to give a precise definition of the interspike interval, on which we can base a

first-passage time analysis, we will consider two types of Poincaré section of the fourteen-

dimensional phase space: the “nullcline” surface associated with the voltage variable,

V0 = {(v,m,n) ∈ D | f(v,m,n) = 0}, (10)

where the rate of change of voltage is instantaneously zero, and an iso-voltage sections of

the form

Su = {(v,m,n) ∈ D | v = u}. (11)

(In §2.6 we will define a third type of Poincaré section, namely isochrons of the mean–

return-time function T (v,n) [10].) Figure 4 illustrates the projection of V0 (green horizontal

line) and Su for u ∈ {−40,10} (red vertical lines) onto the (V, dV/dt) plane.
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For any voltage u we can partition the voltage-slice Su into three disjoint components

Su = Su
0

⊔Su
+

⊔Su
−, defined as follows:

Definition 2 Given the stochastic differential equations (3) defined on the HH domain D,

and for a given voltage u, the “null” surface, Su
0 is defined as

Su
0

∆
= Su ∩ V0 = {(v,m,n) ∈ D | v = u & f(v,m,n) = 0} ,

the “inward current” surface, Su
+ is defined as

Su
+

∆
= {(v,m,n) ∈ D | v = u & f(v,m,n) > 0} ,

and the “outward current” surface is defined as

Su
−

∆
= {(v,m,n) ∈ D | v = u & f(v,m,n) < 0} .

Figure 4 plots dV/dt versus V for roughly 600 cycles, and shows that for certain values

of v, the density of trajectories in a neighborhood of V0 is very small for a finite voltage

range (here shown as −40 to +10 mV). Indeed for any u, the intersection of the null set

Su
0 has measure zero relative to the uniform measure on Su, and the probability of finding

a trajectory at precisely V = u and dV/dt = 0 is zero. From this observation, and because

dV/dt is conditionally deterministic, given n, it follows that a trajectory starting from x ∈
Su
+ will necessarily cross Su

− before crossing Su
+ again (with probability one).

First-Passage Times Based on this observation, we can give a formal definition of the first

passage time as follows.

Definition 3 Given a section S ⊂ D, we define the first passage time (FPT) from a point

x ∈ D to S , for a stochastic conductance-based model as

τ(x,S) ∆
= inf{t > 0 |X(t) ∈ S &X(0) = x}. (12)

Note that, more generally, we can think of τ as τ(x,S, ω), where ω is a sample from the

underlying Langevin process sample space, ω ∈ Ω.2 For economy of notation we usually

suppress ω, and may also suppress S , or x when these are clear from context.

In the theory of stochastic processes a stopping time, τ , is any random time such that

the event {τ ≤ t} is part of the σ-algebra generated by the filtration Ft of the stochastic

process from time 0 through time t. That is, one can determine whether the event defining τ
has occurred or not by observing the process for times up to and including t (see [41], §7.2,

for further details).

Remark 2 Given any section S ⊂ D and any point x ∈ D, the first passage time τ(x,S) is

a stopping time. This fact will play a critical role in the proof of our main theorem.

As Figure 4 suggests, for −40 ≤ v ≤ +10 mV, the probability of finding trajectories

in an open neighborhood of Sv
0 can be made arbitrarily small by making the neighborhood

around Sv
0 sufficiently small. This observation has two important consequences. First, be-

cause the probability of being near the nullcline Sv
0 is vanishingly small, interspike intervals

2 For the 14 × 28D Langevin Hodgkin-Huxley model, Ω may be thought of as the space of continuous
vector functions on [0,∞) with 28 components – one for each independent noise source.
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Fig. 4: Sample trace of X(t) over 1000 cycles. A: View of X(t) (blue trace) in (V, dV/dt)
phase plane. Red vertical line: projections of voltage slices S−40, S−20 and S+10. Green

horizontal line: projection of V -nullcline V0; solid portion corresponds to voltage range in

second panel. B: Projection of X(t) on three coordinates (V,m31, n4). Gray surface: subset

of v-nullcline with −40 mV ≤ v ≤ +10 mV. For this voltage range, trajectories remain a

finite distance away from V0 with high probability.

are well defined (cf. Def. 5, below), even for finite precision numerical simulation and tra-

jectory analysis. In addition, this observation lets us surround the nullcline with a small

cylindrical open set, through which trajectories are unlikely to pass. This cylinder-shaped

buffer will play a role in defining the mean–return-time phase in §2.6.

Moreover, as illustrated in Figure 5, when V = −40, the stochastic trajectory x inter-

sects S−40 at two points within each full cycle, where one is in S−40
+ and one in S−40

− .

In addition, the trajectory crosses S−40
− before it crosses S−40

+ again. This is a particular

feature for conductance-based models in which dV/dt is conditionally deterministic, i.e. the

model includes no current noise.3

Definition 4 Given any set S ⊂ D (for instance, a voltage-section) and a point x ∈ D, the

mean first passage time (MFPT) from x to S ,

T (x,S) ∆
= E[τ(x,S)], (13)

3 In this paper we focus on a Langevin equation, rather than models with discrete channel noise. Therefore,
our trajectories are diffusions, that have continuous sample paths (with probability one). Therefore, the FPT
τ(x,S) is well defined. For discrete channel-noise models, a slightly modified definition would be required.
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Fig. 5: Intersections of a trajectory (blue trace) with a voltage slice (S−20, grey surface)

and V -nullcline (V0, cyan surface). A Trajectory X(t) crosses S−20
+ with increasing volt-

age component (green arrow). Subsequently, the trajectory crosses S−20
− with decreasing

voltage component (red arrow). The trajectory X(t) does not intersect with the null space

for voltage in the range of [−40, 10]mV with probability 1. B A special case for A with the

null component S−20
0 (black diagonal line) indicated for v = −20mV. The intersection of

the stochastic trajectory and v = −20mV is partitioned into an inward component S−20
+

(green arrow shows trajectory crossing with dV/dt > 0) and an outward component S−20
−

(red arrow shows trajectory crossing with dV/dt < 0). Note that the null component S−20
0

does not intersect with the trajectory with probability one.
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and the second moment of the first passage time is defined as

S(x,S) ∆
= E

[

τ(x,S)2
]

. (14)

Interspike Intervals Starting from x ∈ Sv0

+ , at time t = 0, we can identify the sequence of

(τ,x) pairs of crossing times and crossing locations as

(τu
0 = 0,xu

0 = x), (τd
1 ,x

d
1), (τ

u
1 ,x

u
1 ), . . . , (τ

d
k ,x

d
k), (τ

u
k ,x

u
k), . . . ,

with 0 = τu
0 < τd

1 < τu
1 < τd

2 < τu
2 < . . . < τd

k < τu
k , . . .

(15)

where τd
k = inf{t > τu

k−1 | x ∈ Sv0

− } is the kth down-crossing time, xd
k ∈ Sv0

− is the

kth down-crossing location, τu
k = inf{t > τd

k | x ∈ Sv0

+ } is the kth up-crossing time, and

xu
k ∈ Sv0

+ is the kth up-crossing location, for all k ∈ N
+.

Under constant applied current, the HH system has a unique stationary distribution with

respect to which the sequence of crossing times and locations have well-defined probability

distributions [50]. We define the moments of the interspike interval distribution with respect

to this underlying stationary probability distribution.

Definition 5 Given a sequence of up- and down-crossings, relative to a reference volt-

age v0 as above, the kth interspike interval (ISI), Ik (in milliseconds), of the stochastic

conductance-based model is a random variable that is defined as

Ik
∆
= τu

k+1 − τu
k (16)

where τu
k is the kth up-crossing time. The mean ISI is defined as

I
∆
= E[Ik] (17)

and the second moment of the ISI is defined as

H
∆
= E

[

I2k

]

(18)

The variance of the ISI is defined as

σ2
ISI

∆
= E

[

(I − Ik)
2
]

, (19)

where k = 1, 2, · · · .

It follows immediately that σ2
ISI = H − I2.

2.4 Asymptotic phase and infinitesimal phase response curve

Given parameters in App. A with an applied current Iapp = 10 nA, the deterministic HH

model,
dx

dt
= F (x) (20)

fires periodically with a period T0 ≈ 14.63 msec, as shown in Fig. 6. We assume that the

deterministic model has an asymptotically stable limit cycle, γ(t) = γ(t+ T0). The phase

of the model at time t can be defined as [63]

θ(t) =
(t+ T0

ϕ
2π )modT0

T0
× 2π, (21)
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Fig. 6: Sample trace on the limit cycle and its corresponding phase function θ(t). Top:

voltage trace for the deterministic system dx = F (x) dt showing a period of T0 ≈ 14.63
ms. Bottom: The phase function of time saceled from [0, 2π).

where mod is the module operation, and θ(t) = 0 sets the spike threshold for the model. The

constant ϕ ∈ [0, 2π] is the relative phase determined by the initial condition, and there is a

one-to-one map between each point on the limit cycle and the phase. In general, the phase

can be scaled to any constant interval; popular choices include [0, 1), [0, 2π), and [0, T ).
Here we take θ ∈ [0, 2π) (see Fig. 6).

Winfree and Guckenheimer extended the definition of phase from the limit cycle to the

basin of attraction, which laid the foundation for the asymptotic phase function φ(x) [25,

77,78]. For the system in Eqn. (20), let x(0) and y(0) be two initial conditions, one on the

limit cycle and one in the basin of attraction, respectively. Denote the phase associated to

x(0) as θ0(t). If the solutions x(t) and y(t) satisfy

lim
t→∞

|x(t)− y(t)| = 0, i.e. lim
t→∞

|φ(y(t))− θ0(t)| = 0,

then y(0) has asymptotic phase θ0. The set of all points sharing the same asymptotic phase

comprises an isochron, a level set of φ(x). We also refer to such a set of points as an iso-

phase surface [60]. By construction, the asymptotic phase function φ(x) coincides with the

oscillator phase θ(t) on the limit cycle, i.e. θ(t) = φ(γ(t)). We will assume that φ(x) is

twice-differentiable within the basin of attraction.

The phase response curve (PRC) is defined as the change in phase of an oscillating

system in response to a given perturbations. If the original phase is defined as θb and the

phase after perturbation as θa, then the PRC is the shift in phase

∆(θ) = θa − θb.

In the limit of small instantaneous perturbations, the PRC may be approximated by the

infinitesimal phase response curve (iPRC) [63,77]. For a deterministic limit cycle, the iPRC
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Z(t) obeys the adjoint equation [6]

dZ

dt
= −J (γ(t))⊺Z, (22)

Z(0) = Z(T0), (23)

Z(0)⊺F(γ(0)) = 1 (24)

where T0 is the period of the deterministic limit cycle, γ(t) is the periodic limit cycle tra-

jectory (for the HH equations (20), γ(t) ∈ R
14) and J (t) = DF(γ(t)) is the Jacobian

of F evaluated along the limit cycle. The iPRC Z(t) is proportional to the gradient of the

phase function φ(x) evaluated on the limit cycle. For any point x in the limit cycle’s basin

of attraction, we can define a timing sensitivity function Z̃(x)
∆
= T0

2π∇xφ(x). For the limit

cycle trajectory γ(t), we have Z(t) = Z̃(γ(t)). The first component of Z, for example, has

units of msec/mv, or change in time per change in voltage.

2.5 Small-noise expansions

Given the scaling of the noise coefficients with system size, ǫ ∝ 1/Ω (cf. p. 6), the larger

the system size, the smaller the effective noise level. For sufficiently small values of ǫ, the

solutions to eq. (3) remain close to the determinstic limit cycle; the (stochastic) interspike

intervals will remain close to the deterministic limit cycle period T 0. If X(t) is a trajec-

tory of (3), and φ(x) is any twice-differentiable function, then Ito’s lemma [41] gives an

expression for the increment of φ during a time increment dt, beginning from state X:

dφ(X(t)) = (∇φ(X)) · dX+
ǫ

2

∑

ij

∂2φ(X)

∂xi∂xj
dt (25)

=



F(X) · ∇φ(X) +
ǫ

2

∑

ij

∂2φ(X)

∂xi∂xj



 dt+
√
ǫ (∇φ(X))⊺ G(X) dW

= L†[φ(X)] dt+
√
ǫ (∇φ(X))⊺ G(X)dW (26)

up to terms of order dt. The operator L† defined by (25)-(26) is the formal adjoint of the

Fokker-Planck or Kolmogorov operator [49], also known as the generator of the Markov

process [41], or the Koopman operator [28].

Dynkin’s formula, which we will use to prove our main result, is closely related to

equation (26). Let x ∈ D and let E
x denote the probability law for the ensemble of

stochastic trajectories beginning at x. Dynkin’s theorem ([41], §7.4) states that if φ is a

twice-differentiable function on D, and if τ is any stopping time (cf. Remark 2) such that

E
x[τ ] < ∞, then

E
x[φ(X(τ)] = φ(x) + E

x

[
∫ τ

0

L†[φ(X(s)]ds

]

. (27)

2.6 Iso-phase Sections

For the deterministic model, the isochrons form a system of Poincaré sections Sϕ, ϕ ∈
[0, 2π], each with a constant return time equal to the oscillator period T0. When the system
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is perturbed by noise, ǫ > 0 in (3), we consider a set of “iso-phase sections” based on a

mean–return-time (MRT) construction, first proposed by [60] and rigorously analyzed by

[10]. As shown in [10], the MRT iso-phase surfaces S are the level sets of a function Tǫ(x)
satisfying the MRT property. Namely, if S is an iso-phase section, then the mean time taken

to return to S , starting from any x ∈ S , after one full rotation, is equal to the mean period,

T ǫ.

The construction in [10] requires that the Langevin equation (3) be defined on a domain

with the topology of an n-dimensional cylinder, because finding the MRT function Tǫ(x)
involves specifying an arbitrary “cut” from the outer to the inner boundary of the cylinder.

Conductance-based models in the steady-firing regime, where the mean-field equations sup-

port a stable limit cycle, can be well approximated by cylindrical domains. In particular,

their variables are restricted to a compact range, and there is typically a “hole” through the

domain in which trajectories are exceedlingly unlikely to pass, at least for small noise.

As an example, consider the domain for the 14D HH equations (recall Defs. 1), namely

D ∆
= [vmin, vmax] × ∆7 × ∆4. The p-dimensional simplex ∆p is a bounded set, and, as

established by Lemma 1, the trajectories of (3) remain within fixed voltage bounds with

probability 1, so our HH system operates within a bounded subset of R
14. To identify a

“hole” through this domain, note that the set

Su
0

∆
= Su ∩ V0 = {(v,m,n) ∈ D | v = u & f(v,m,n) = 0} ,

which is the intersection of the voltage nullcline V0 with the constant-voltage section Su, is

rarely visited by trajectories under small noise conditions (Fig. 4B).

For r > 0, we define the open ball of radius r around Su
0 as

Br(Su
0 )

∆
=

{

x ∈ D
∣

∣

∣
min
y∈Su

0

(||x− y||) < r

}

. (28)

For the remainder of the paper, we take the stochastic differential equation (3) to be defined

on

D0 = D\Br(Sv
0 ). (29)

For sufficiently small r > 0, D0 is a space homeomorphic to a cylinder in R
14. To see this,

consider the annulus A = I1 × B13, where I1 = [0, 2π], and B13 is a simply connected

subset of R13. That space is homotopy equivalent to a circle S1 by contracting the closed

interval parts to a point, and contracting the annulus part to its inner circle.

To complete the setup so that we can apply the theory from [10], we set boundary con-

ditions
∑

ij ni(GG⊺)ij∂jTǫ = 0 at reflecting boundaries with outward normal n on both

the innner and outer boundaries of the cylinder. In addition, we choose an (arbitrary) section

transverse to the cylinder, and impose a jump condition Tǫ → Tǫ + T ǫ across this section,

where T ǫ is mean oscillator period under noise level ǫ.

As showed in [10], this construction allows us to establish a well defined MRT function

for a given noise level ǫ, T ǫ(x). We then obtain the iso-phase sections as level sets of T ǫ(x).
We give a formal definition as follows.

Definition 6 Given a fixed noise level ǫ ≥ 0, and an iso-phase surface S for eqn. (3), we

define the kth iso-phase interval (IPI) as the random variable

∆k
∆
= µk − µk−1, (30)
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where {µk}k∈N+ is a sequence of times at which the trajectory crosses S . The mean IPI is

defined as

T ǫ
∆
= E[∆k] (31)

and the second moment of the IPI is defined as

Sǫ
∆
= E

[

∆2
k

]

. (32)

The variance of the IPI is defined as

σ2
φ

∆
= E

[

(T ǫ −∆k)
2
]

. (33)

The moments (31)-(33) are evaluated under the stationary probability distribution.

It follows immediately that for a given noise level ǫ, we have σ2
φ = Sǫ −∆2

ǫ .

Remark 3 Each iso-phase crossing time, {µk}k∈N+ , in Definition 6, is a stopping time.

Remark 4 Because (3) is a diffusion with continuous sample paths, it is possible that when

ǫ > 0 a stochastic trajectory X(t) may make multiple crossings of an iso-phase section S in

quick succession. Should this be the case, we condition the crossing times µk on completion

of successive circuits around the hole in our cylindrical domain. That is, given µk, we take

µk+1 to be the first return time to S after having completed at least one half a rotation

around the domain.

3 Noise Decomposition of the 14-D Stochastic HH Model

Ermentrout et al. [13] studied the variance of the infinitesimal phase response curve for a

neuronal oscillator driven by a white noise current, using a four-dimensional version of the

Hodgkin-Huxley model as an example. As a corollary result, they obtained an expression

for the variance of the interspike interval, by setting the size of the perturbing voltage pulse

to zero.

Stochastic shielding [53] allows one to resolve the molecular contributions (per directed

edge in the ion channel state transition graph E , cf. Fig. 2) to the variance of ion chan-

nel currents [55,56], and provides a numerical method for accurate, efficient simulation of

Langevin models using a small subset of the independent noise forcing (only for the “most

important edges”) [47].

Here we combine the stochastic shielding method with Cao et al.’s mean–return-time

phase analysis [10] to obtain an analytical decomposition of the molecular sources of timing

variability under current clamp.

Prior analysis of stochastic shielding ( [55,56]) assumed voltage clamp conditions, un-

der which the ion channel state process is a stationary Markov process. Under current clamp,

however, fluctuations of channel state determine fluctuations in current, which in turn dic-

tate voltage changes, which then influence channel state transition probabilities, forming a

closed loop of statistical interdependence. Therefore, the variance of ISI under current clamp

becomes more difficult to analyze. Nevertheless, in this section, we seek a decomposition of

the interspike-interval variance into a sum of contributions from each edge k ∈ E , e.g.

σ2
ISI(ǫ) = ǫ

∑

k∈E

σ2
ISI,k +O(ǫ2) (34)

σ2
φ(ǫ) = ǫ

∑

k∈E

σ2
φ,k +O(ǫ2) (35)
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to leading order as ǫ → 0.

Theorem 1 below gives the detailed form of the decomposition. As preliminary evidence

for its plausibility, Fig. 7 shows the coefficient of variation (standard deviation divided by

mean) of the ISI under the stochastic shielding approximation for Langevin model in differ-

ent scenarios: including noise along a single directed edge at a time (blue bars), or on edges

numbered 1 to k inclusive (numbering follows that in Fig. 2). For large noise (Fig. 7a,c),

the effects of noise from different edges combine subadditively. For small noise (Fig. 7b,d)

contributions of distinct edges to firing variability combine additively. Edges with small

contribution to steady-state occupancy under voltage clamp (edges 1-6 for K+, edges 1-18

for Na+, cf. Fig. 2) contribute additively even in the large-noise regime. Thus even in the

large-noise regime, stochastic shielding allows accurate simulation of ISI variability using

significantly fewer edges for both the sodium and potassium channels.

Fig. 7: Approximate decomposition of interspike interval (ISI) variance into a sum of contributions from
each edge for Hodgkin-Huxley model with stochastic K+ and deterministic Na+ gates (a,b) or stochastic
Na+ and deterministic K+ gates (c,d). Bar n shows ISI coefficient of variation (CV) when noise on edge n
is included (a,c: ǫ = 1, large noise; b,d: ǫ = 0.01, small noise). Blue line shows the CV of ISI when noise
on all edges numbered ≤ n are included. Red line shows CV predicted by a linear superposition of the form
(41).
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3.1 Assumptions for Decomposition of the Full Noise Model

Consider a Langevin model for a single-compartment conductance-based neuron (3). We

organize the state vector into the voltage component followed by fractional gating variables

as follows:

x = (v, q1, q2, . . . , qN )⊺. (36)

Here, N is the number of nodes in the union of the ion channel state graphs. For example,

for the HH system, N = 13, and we would write q1 = m00, . . . , q8 = m31 for the sodium

gating variables, and q9 = n0, . . . , q13 = n4 for the potassium gating variables. Similarly,

we enumerate the K edges occurring in the union of the ion channel state graphs, and write

the stoichiometry vector ζk ∈ R
N+1 for transition k, taking source i(k) to destination j(k),

in terms of (N + 1)-dimensional unit vectors eN+1
i ∈ R

N+1 as ζk = −eN+1
i(k) + eN+1

j(k) . In

order to study the contributions of individual molecular transitions to spike-time variability,

we develop asymptotic expansions of the first and second moments of the distribution of iso-

phase surface crossing times (iso-phase interval distribution see Def. 6 above) in the small ǫ
limit.

Before formally stating the theorem, we make the following assumptions concerning the

system (3):

A1 We assume the deterministic dynamical system dX
dt

= F(x) has an asymptotically,

linearly stable limit cycle x = γ(t) with finite period T0, and asymptotic phase function

φ(x) defined throughout the limit cycle’s basin of attraction such that
dφ(x(t))

dt
= 2π

T0

along deterministic trajectories, and a well defined infinitesimal phase response curve

(iPRC), Z(t) = ∇φ(γ(t)).
A2 We assume that the (N + 1)×K matrix G has the form

G(x) =
K
∑

k=1

(ζkrk)
√

αk(v)qi(k) (37)

where rk =
(

eKk
)⊺

is an K-dimensional unit row vector with all zero components

except in the kth entry, αk(v) is the voltage-dependent per capita transition rate along

the kth directed edge, and the qi(t) denote channel state occupancy probabilities as de-

scribed above (cf. (36)).

Remark 5 The product ζkrk is a (N + 1)×K sparse matrix, containing zeros everywhere

except in the kth column. Each column conveys the impact of an independent noise source

on the state vector [47].

A3 We assume that for sufficiently small noise, 0 < |ǫ| ≪ 1, we have a well defined joint

stationary probability distribution in the voltage V and the gating variables Q1, . . . , QN

with a well defined mean period T ǫ and mean–return-time phase function Tǫ(x). More-

over, we assume that the mean period, the MRT function, and the second moment func-

tion all have well defined series expansions:

T ǫ = T 0 + ǫT 1 +O(ǫ2) (38)

Tǫ(x) = T0(x) + ǫT1(x) +O(ǫ2) (39)

Sǫ(x) = S0(x) + ǫS1(x) +O(ǫ2), (40)

as ǫ → 0.
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Remark 6 Note that the expansions (38)-(40) may break down in the small-ǫ limit for noise-

dependent oscillators, such as the heteroclinic oscillator [70] or ecological quasi-cycles [36],

but should remain valid for finite-period limit cycles such as the Hodgkin-Huxley system in

the periodic spiking regime.

3.2 Noise Decomposition Theorem

Theorem 1 (Noise Decomposition Theorem) Let x = (V0,Q0) ∈ S0 be the point on the

deterministic limit cycle such that φ(x) = 0 (i.e. assigned to “phase zero”), and let Ex

denote expectation with respect to the law of trajectories with initial condition x, for fixed

ǫ ≥ 0. Under assumptions A1-A3, the variance σ2
φ of the S0-isochron crossing times (iso-

phase intervals, or IPI) for conductance-based Langevin models (eqn. (3)) decomposes into

additive contributions from each channel-state transition, in the sense that

σ2
φ =

∑

k∈all edges

σ2
φ,k (41)

=ǫ
∑

k

∫ T 0

0

E
x

(

αk(V (t))Qi(k)(t)
(

ζ⊺k Z̃(X(t))
)2
)

dt+O
(

ǫ2
)

, (42)

as ǫ → 0+. The function X(t) = (V (t), Q1(t), . . . , QN (t))⊺ denotes a stochastic trajec-

tory of (3) with initial condition x.

Remark 7 The theorem holds independently of the choice of the initial point x on the de-

terministic limit cycle, in the sense that choosing a different base point would just shift the

endpoints of the interval of integration; since the deterministic limit cycle is periodic with

period T 0, the resulting expression for σ2
φ is the same. See Corollary 1.

Remark 8 The proof relies on Dynkin’s formula, first–passage-time moment calculations,

and a small noise expansion. The right hand side of (41) leads to an approximation method

based on sampling stochastic limit cycle trajectories, which we show below gives an accurate

estimate for σ2
φ.

Remark 9 Although the interspike intervals (ISI) determined by voltage crossings are not

strictly identical to the iso-phase intervals (IPI) defined by level crossings of the function

Tǫ(x), we nevertheless expect that the variance of the IPI, and their decomposition, will

provide an accurate approximation to the variance of the ISI. In §4 we show numerically

that the decomposition given by (41) predicts the contribution of different directed edges to

the voltage-based ISIs with a high degree of accuracy.

Before proving the theorem, we state and prove two ancillary lemmas.

Lemma 2 Fix a cylindrical domain D0 (as in equation (29)) and an iso-phase section S0

transverse to the vector field F. If the mean period T ǫ and MRT function Tǫ(x) have Taylor

expansions (38) and (39), then the unperturbed isochron function T0 and the sensitivity of
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the isochron function to small noise T1 satisfy

F(x) · ∇T0(x) = −1, (43)

F(x) · ∇T1(x) = −1

2

∑

ij

(GG⊺)ij∂
2
ijT0(x), (44)

∑

ij

ni(GG⊺)ij∂jT1

∣

∣

∣

∣

∣

∣

∂D

= 0, (45)

where T1 → T1 + T 1 and T0 → T0 + T 0 across S0, and n is the outward normal to the

boundary ∂D.

Note that T 1 may be determined from the stationary solution of the forward equation for

0 < ǫ, or through Monte Carlo simulations (in some cases T 1 ≡ 0).

Proof For all noise levels ǫ ≥ 0, from [20] (Chapter 5, equation 5.5.19), the MRT function

Tǫ(x) satisfies

L† [Tǫ] = F · ∇Tǫ +
ǫ

2

∑

ij

(GG⊺)ij∂
2
ijTǫ = −1, (46)

together with adjoint reflecting boundary conditions at the edges of the domain D with

outward normal vector n

∑

ij

ni(GG⊺)ij∂jTǫ

∣

∣

∣

∣

∣

∣

∂D

= 0 (47)

and the jump condition is specified as follows. When x increases across the reference section

S in the “forward direction”, i.e., in a direction consistent with the mean flow in forwards

time, the function Tǫ → Tǫ+T ǫ. Note that since T0 → T0+T 0, we also have T1 → T1+T 1

across the same Poincaré section, for consistency.

Substituting the expansion (39) into (46) gives

−1 =F · ∇
(

T0(x) + ǫT1(x) +O(ǫ2)
)

+
ǫ

2

∑

ij

(GG⊺)ij∂
2
ij

(

T0(x) + ǫT1(x) +O(ǫ2)
)

,

(48)

=F · ∇T0(x) + F · ∇
(

ǫT1(x) +O(ǫ2)
)

+
ǫ

2

∑

ij

(GG⊺)ij∂
2
ijT0(x) (49)

+
ǫ

2

∑

ij

(GG⊺)ij∂
2
ij

(

ǫT1(x) +O(ǫ2)
)

Note that, when ǫ = 0
F · ∇T0(x) = −1, (50)

consistent with T0 being equal to minus the asymptotic phase of the limit cycle (up to an

additive constant). On the other hand, for ǫ 6= 0, by comparing the first order term, the

sensitivity of the isochron function to small noise T1 satisfies

F · ∇T1(x) = −1

2

∑

ij

(GG⊺)ij∂
2
ijT0,

∑

ij

ni(GG⊺)ij∂jT1

∣

∣

∣

∣

∣

∣

∂D

= 0, (51)

where T1 → T1 + T 1 across S , and n is the outward normal to the boundary ∂D, thus we

proved Lemma 2.
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Our next lemma concerns the second moment of the first passage time from a point

x ∈ D to a given iso-phase section S0, that is, Sǫ(x)
∆
= E

[

τ(x,S0)
2
]

, cf. (14).

Lemma 3 Suppose the assumptions of Lemma 2 hold, and assume in addition that Sǫ has

a Taylor expansion (40) for small ǫ. The second moment, S0(x), of the first passage time

τ(X,S) from a point x to a given isochron section S0 = {Tǫ(x) = const}, and its first

order perturbation, S1(x), satisfy

F · ∇S0 = −2T0 (52)

F · ∇S1 +
1

2

∑

ij

(GG⊺)ij∂
2
ijS0 = −2T1. (53)

Proof Following [20] (Chapter 5, equation 5.5.19), the second moment Sǫ(x) of the first

passage time from a point x to a given isochron Tǫ(x) = const, satisfies

L†[Sǫ] := F · ∇Sǫ +
ǫ

2

∑

ij

(GG⊺)ij∂
2
ijSǫ = −2Tǫ.

Substituting in the Taylor expansions (38)-(40), we have to order O(ǫ)

F · ∇(S0 + ǫS1) +
ǫ

2

∑

ij

(GG⊺)ij∂
2
ij(S0 + ǫS1) = −2(T0 + ǫT1) +O(ǫ2). (54)

Setting ǫ = 0, we see that

F · ∇S0 = −2T0. (55)

For ǫ > 0, the first order terms yield

F · ∇S1 +
1

2

∑

ij

(GG⊺)ij∂
2
ijS0 = −2T1. (56)

Therefore, we complete the proof of Lemma 3.

3.3 Proof of Theorem 1

Proof We divide the proof of the Theorem into three steps.

1. First, we will calculate the infinitesimal generator for the variance of the iso-phase in-

terval (IPI).

For fixed noise level ǫ > 0, the variance of IPI, σ2
φ is equal to the expected value of

Vǫ = Sǫ − T 2
ǫ , evaluated at the isochron T = const + T . Note that when ǫ = 0,

the system is deterministic and the iso-phase interval has a zero variance, i.e., V0 ≡ 0.

Expanding Sǫ = S0 + ǫS1+O(ǫ2) and Vǫ = ǫV1 +O(ǫ2) to first order in ǫ ≪ 1, then

Vǫ = V0 + ǫV1 +O(ǫ2) (57)

= Sǫ − T 2
ǫ (58)

= S0 + ǫS1 +O(ǫ2)−
(

T0(x) + ǫT1(x) +O(ǫ2)
)2

(59)

= S0 − T 2
0 + ǫ(S1 − 2T0T1) +O(ǫ2), (60)
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thus,

S0 = T 2
0 (61)

S1 = V1 + 2T0T1. (62)

Plug the above results into equation (56) (Lemma 3), we can obtain that

F · ∇(V1 + 2T0T1) +
1

2

∑

ij

(GG⊺)ij∂
2
ijT

2
0 = −2T1. (63)

By the product rule and use equations (50), and (51),

F · ∇(2T0T1) = 2T1F · ∇(T0) + 2T0F · ∇(T1) (64)

= −2T1 − T0

∑

ij

(GG⊺)ij∂
2
ijT0. (65)

Therefore,

F · ∇V1 − 2T1 − T0

∑

ij

(GG⊺)ij∂
2
ijT0 +

1

2

∑

ij

(GG⊺)ij∂
2
ijT

2
0 = −2T1. (66)

Since ∂2
ijT

2
0 = ∂i(2T0∂jT0) = 2∂iT0∂jT0 + 2T0∂

2
ijT0, it follows that

F · ∇V1 − T0
∑

ij(GG⊺)ij∂
2
ijT0 +

∑

ij(GG⊺)ij∂iT0∂jT0 +
∑

ij(GG⊺)ijT0∂
2
ijT0 = 0

F · ∇V1 = −∑ij(GG⊺)ij∂iT0∂jT0 (67)

Finally,

L†[Vǫ] = L†[V0 + ǫV1 +O(ǫ2)] (68)

= ǫL†[V1] +O(ǫ2) (69)

= ǫ



F · ∇V1 +
ǫ

2

∑

ij

(GG⊺)ij∂
2
ijV1



+O(ǫ2) (70)

= ǫ (F · ∇V1) + O(ǫ2) (71)

= −ǫ
∑

ij

(GG⊺)ij∂iT0∂jT0 +O(ǫ2), (72)

where we used V0 ≡ 0 and applied equation (67).

2. Secondly, we will show that for first-order transition networks underlying the molecular

ion channel process, the decomposition GG⊺ =
∑

k∈E GkG⊺

k is exact.

To see this, note that G can be written as a sum of 29 sparse matrix with one zero matrix

and 28 rank one matrix. The kth rank one matrix consists of the transition due to the kth

edge and there are 28 edges in the 14-D HH model. The kth column of the kth rank one

matrix equals to a stoichiometry vector times the square root of the corresponding state

occupancy and zeros otherwise. For example, the kth column of G is given by

Gk = ζk

√

αk(v)Xi(k),
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where ζk is the stoichiometry vector, αk is the voltage-dependent per capita transition

rate, and Xi(k) is the population vector component at the source node i(k) for transition

number k.

GG⊺ = (G1 + G2 + · · ·+ G28)(G1 + G2 + · · ·+ G28)
⊺

(73)

=

28
∑

k=1

GkG⊺

k (74)

=

28
∑

k=1

αk(v)Xi(k)ζkζ
⊺

k (75)

where (74) holds because GiG⊺

j = 0 when i 6= j.

Note that ∂iT0∂jT0 = ω−2∂iφ(x)∂jφ(x) = Z̃i(x)Z̃j(x), with ω ≡ 2π/T 0, because

φ is normalized to range from 0 to 2π, and T0 ranges from 0 to T 0.

∑

ij

(GG⊺)ij∂iT0∂jT0 =
∑

ij

(GG⊺)ijZ̃iZ̃j (76)

=

29
∑

k=2

∑

ij

(GkG⊺

k)ijZ̃iZ̃j (77)

=

28
∑

k=1

(

αk(v)Xi(k)

∑

ij

(ζkζ
⊺

k)ijZ̃iZ̃j

)

(78)

=

28
∑

k=1

αk(v)Xi(k)

[

Z̃
2
i(k) + Z̃

2
j(k) − 2Z̃i(k)Z̃j(k)

]

(79)

=

28
∑

k=1

αk(v)Xi(k)

[

Z̃i(k) − Z̃j(k)

]2
(80)

=

28
∑

k=1

αk(v)Xi(k)

(

ζ⊺k Z̃
)2

, (81)

where i(k) and j(k) are the source and sink nodes for transition number k. Equation

(79) holds because the kth edge only involves two nodes.

3. Finally, we will apply Dynkin’s formula to complete the rest of the proof.

For a stopping time τ(x) with E
x (τ) < ∞, by Dynkin’s formula (27), the expected IPI

variance starting from x is

E
x (Vǫ(X(τ))) = Vǫ(x) + E

x

(
∫ τ

0

L†[Vǫ(X(s))]ds

)

(82)

The first return time τ is the time at which the trajectory X(t) first returns to the

isochron S0, therefore X(τ) ∈ S0 and the time left to reach S0 from the random loca-

tion X(τ) is guaranteed to be zero. That is, Vǫ(X(τ)) = 0 with probability 1. Hence,

E
x (Vǫ(X(τ))) ≡ 0 for all x ∈ S0.

Fix a mean–return-time isochron S0, the mean return time from any initial location x ∈
S0 back to S0, after completing one rotation is exactly T ǫ, by construction. However, in

principle, the variance of the return time might depend on the initial location within the
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isochron. We next show that, to leading order in ǫ, this is not the case, that is, the MRT

isochrons have uniform first and second moment properties.

Using equations (72), (81) and (82), we obtain

Vǫ(x) = −E
x

(
∫ τ

0

L† [Vǫ(X(s))] ds

)

(83)

= E
x





∫ τ

0

ǫ
∑

ij

(GG⊺)ij∂iT0∂jT0ds



+O
(

ǫ2
)

(84)

= ǫ

28
∑

k=1

E
x

(
∫ τ

0

αk(v)Xi(k)

(

ζ⊺k Z̃
)2

ds

)

+O
(

ǫ2
)

, (85)

where the integrals are evaluted along a stochastic trajectory X(t) with X(0) = x and

X(τ) ∈ S0, one rotation later. Holding the deterministic zero-phase isochron S0 fixed,

and choosing an arbitrary point y ∈ D, we have, by definition,

E
y[τ(y)] = Tǫ(y) = T0(y) + ǫT1(y) +O

(

ǫ2
)

. (86)

Therefore, starting from an initial condition x ∈ S0 one period earlier, we have

E
x

(
∫ τ

0

αk(v)Xi(k)

(

ζ⊺k Z̃
)2

ds

)

= E
x

(

∫ T 0

0

αk(v)Xi(k)

(

ζ⊺k Z̃
)2

ds

)

+O (ǫ) .

(87)

This relation follows immediately from our assumptions, because, for x ∈ S0,
∣

∣

∣

∣

∣

E
x

(
∫ τ

0

αk(V (s))Xi(k)(s)
(

ζ⊺k Z̃(s)
)2

ds

)

− E
x

(

∫ T 0

0

αk(V (s))Xi(k)(s)
(

ζ⊺k Z̃(s)
)2

ds

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x

(
∫ τ

T 0

αk(V (s))Xi(k)(s)
(

ζ⊺k Z̃(s)
)2

ds

)∣

∣

∣

∣

(88)

≤ C1

∣

∣E
x(τ(x)− T 0)

∣

∣ = C1

∣

∣E
x(τ(x))− E

x(T 0)
∣

∣ = C1

∣

∣T ǫ − T 0

∣

∣ (89)

= ǫC1T 1 +O
(

ǫ2
)

. (90)

Here C1 is a positive constant bounding the integrand αk(v(t))Xi(k)(t)
(

η⊺kZ̃(t)
)2

.

From Remark 1, αk ≤ αmax. By definition, 0 ≤ Xi ≤ 1 for each i. For each edge k,

|ζk| =
√
2. Since Z̃ is continuous and periodic, |Z̃| is bounded by some constant zmax.

Therefore setting C1 =
√
2αmaxzmax satisfies (90).

Because the initial point x ∈ S0 was located at an arbitrary radius along the specified

mean–return-time isochron, the calculation above shows that σ2
φ = E[Vǫ(x) |x ∈ S0] is

uniform across the isochron S0, to first order in ǫ. Thus, for small noise levels, the MRT

isochrons enjoy not only a uniform mean return time, but also a uniform variance in the

return time, at least in the limit of small noise.

Finally, we note that σ2
φ (equivalently, and Vǫ(x)) combine a sum of contributions over

a finite number of edges. From equations (85) and (87), the variance of the inter-phase

interval is given by

σ2
φ = ǫ

28
∑

k=1

E
x

(

∫ T 0

0

αk(V (s))Xi(k)(s)
(

ζ⊺k Z̃(s)
)2

ds

)

+O
(

ǫ2
)

. (91)
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To complete the proof, note that (42) follows from (92) by exchange of expectation E
x[·]

with (deterministic) integration
∫ T 0

0
[·]dt. This completes the proof of Theorem (1).

The choice of the initial reference point x or isochron S0 in (92) was arbitrary and the

variance of IPI is uniform to the first order. Therefore, the inter-phase-interval variance may

be uniform (to first order) almost everywhere in D. We can then replace the integral around

the limit cycle in (92) with an integral over D with respect to the stationary probability

distribution. Thus we have the following

Corollary 1 Under the assumptions of Theorem 1, the inter-phase-interval variance satis-

fies

σ2
φ = ǫT 0

28
∑

k=1

E

(

αk(V )Xi(k)

(

ζ⊺k Z̃(X)
)2
)

+O
(

ǫ2
)

, (92)

as ǫ → 0, where E denotes expectation with respect to the stationary probability density for

(3).

Remark 10 Because the variance of the IPI, σ2
φ, is uniform regardless the choice of the

reference iso-phase section, we will henceforth refer it as σ2
IPI throughout the rest of this

paper.

Now we have generalized the edge important measure introduced in [56] for the voltage-

clamp case to the current clamp case with weak noise. In the next section we leverage The-

orem 1 to estimate the inter-phase interval variance in two different ways: by averaging

over one period of the deterministic limit cycle (compare (91)) or by averaging over a long

stochastic simulation (compare (92)). As we will see below, both methods give excellent

agreement with direct measurement of the inter-phase interval variance.

4 Numerical Results

Theorem 1 and Corollary 1 assert that for sufficiently weak levels of channel noise, the

contributions to inter-phase interval variance made by each individual edge in the channel

state transition graph (cf. Fig. 2) combine additively. Moreover, the relative sizes of these

contributions provide a basis for selecting a subset of noise terms to include for running

efficient yet accurate Langevin simulations, using the stochastic shielding approximation

[47]. In this chapter, we test and illustrate several aspects of these results numerically.

First, we confront the fact that the inter-phase-intervals and the inter-spike-intervals are

not equivalent, since iso-voltage surfaces do not generally coincide with isochronal surfaces

[75]. Indeed, upon close examination of the ISI variance in both real and simulated nerve

cells, we find that the voltage-based σ2
ISI is not constant, as a function of voltage, while

the phase-based σ2
IPI remains the same regardless of the choice of reference isochron. Nev-

ertheless, we show that the voltage-based ISI variance is well approximated – to within a

few percent – by the phase-based IPI variance, and therefore, the linear decomposition of

Theorem 1 approximately extends to the ISI variance as well.

Second, after showing that the linear decomposition of the ISI variance holds at suffi-

ciently small noise levels, we explore the range of noise levels over which the linear su-

perposition of edge-specific contributions to ISI variance holds. Consistent with the basic

stochastic shielding phenomenon, we find that the variability resulting from noise along
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edges located further from the observable transitions scales linearly with noise intensity, ǫ
even for moderate noise levels, while the linear scaling of eqn. (91) breaks down sooner with

increasing noise for edges closer to observable transitions.

Finally, we explore the accuracy of a reduced representation using only the two most im-

portant edges from the K+channel and the four most important edges from the Na+channel,

over a wide range of noise intensities. Here, we find that removing the noise from all but

these six edges still gives an accurate representation of the ISI variance far beyond the weak

noise regime, despite the apparent breakdown of linearity.

In this section, the variance of ISIs and IPIs are calculated to compare with the predic-

tions using Theorem 1. First, we numerically show that there is a small-noise region within

which Theorem 1 holds, for each individual edge, as well as for the whole Langevin model

(cf. (3)). We have two numerical approaches to evaluating the theoretical contributions. The

first method involves integrating once around the deterministic limit cycle while evaluating

the local contribution to timing variance at each point along the orbit. This approach derives

from the theorem, cf. (42) or (91), which we refer as the “limit cycle prediction”. The sec-

ond approach derives from the corollary, (92): we average the expected local contribution

to timing variation over a long stochastic trajectory. More specifically, equation (92) gives

a theoretical value of the average leading-order contribution mass function, Pk, for the kth

edge, as

Pk := E

[

αk(V )Xi(k)

(

ζ⊺k Z̃(X)
)2
]

, (93)

where E(·) is the mean with respect to the stationary probability distribution of the stochastic

limit cycle. Given a sample trajectory X(t), we approximate the iPRC near the limit cycle,

Z̃(X(t)), by using the phase response curve of the deterministic limit cycle

Z̃(X(t)) ≈ Ẑ(X(t))
∆
= Z

(

argmin
s

∣

∣

∣

∣

(

γ(s)−X(t)

)

⊺

Z(s)

∣

∣

∣

∣

)

, (94)

where γ is a point on the deterministic limit cycle and Z is the infinitesimal phase response

curve on the limit cycle (cf. §2.4). The predicted contribution of the kth edge to the IPI

variance with average period T0, is therefore

From Corollary 1 we have

σ2
IPI ≈ ǫT 0

∑

k

Pk. (95)

We call Pk the point mass prediction for the contribution of the kth edge to the inter-phase

interval variance.

For small noise, both approaches give good agreement with the directly measured IPI

variance, as we will see in Fig. 10.

To numerically calculate the contribution for each directed transition in Fig. 2, we apply

the stochastic shielding (SS) technique proposed by [53], simulating the Langevin process

with noise from all but a single edge suppressed. Generally speaking, the SS method approx-

imates the Markov process using fluctuations from only a subset of the transitions, often the

observable transitions associated to the opening states. Details about how stochastic shield-

ing can be applied to the 14 × 28D Langevin model is discussed in our previous paper

[47].

All numerical simulations for the Langevin models use the same set of parameters,

which are specified in Tab. 2 with given noise level ǫ in eqn. (3). We calculate the fol-

lowing quantities: the point mass prediction Pk, using exact stochastic trajectories (93); the

predicted contributions by substituting the stochastic terms in (91) with the deterministic
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limit cycle; the variance and standard deviation of the interspike intervals (σ2
ISI); and the

variance and standard deviation of the isophase intervals (σ2
IPI).

In addition to numerical simulations, we will also present several observations of exper-

imental recordings. Data in Fig. 8 and Fig. 9 were recorded in vitro in Dr. Friel’s laboratory

from intact wild type Purkinje cells with synaptic input blocked (see §D for details). We an-

alyzed fourteen different voltage traces from cerebellar Purkinje cells from wild type mice,

and seventeen from mice with the leaner mutation. The average number of full spike os-

cillations is roughly 1200 for wild type PCs (fourteen cells) and 900 for leaner mutation

(seventeen cells).

4.1 Observations on σ2
ISI and σ2

IPI

When analyzing voltage recordings from in vitro Purkinje cells (PCs) and from simulation

of the stochastic HH model, we have the following observations. First, given a particular

(stochastic) voltage trace, the number of interspike intervals (cf. Def. 5) varies along with

the change in voltage threshold used for identifying spikes. Second, within a range of voltage

thresholds for which the number of ISIs is constant, the variance of the interspike interval

distribution, σ2
ISI (cf. Def. 5), which is obtained directly from the voltage recordings, nev-

ertheless varies as a function of the threshold used to define the spike times. Thus the ISI

variance, a widely studied quantity in the field of computational neuroscience [26,30,40,64,

68], is not invariant with respect to the choice of voltage threshold. To our knowledge this

observation has not been previously reported in the neuroscience literature.4

Fig. 8 plots the histogram of voltage from a wild type PC and number of spikes cor-

responding to voltage threshold (Vth) in the range of [−60,−10] mV. Setting the threshold

excessively low or high obviously will lead to too few (or no) spikes. As the threshold

increases from excessively low values, the counts of threshold-crossing increases. For ex-

ample, when Vth is in the after hyper-polarization (AHP) range (roughly −58 . Vth . −48
mV in Fig. 8) the voltage trajectory may cross the threshold multiple times before it finally

spikes. As illustrated in Fig. 8, the number of spikes is not a constant as the threshold varies,

therefore, the mean and variance of ISI are not well-defined in the regions where extra spikes

are counted. To make the number of spikes accurately reflect the number of full oscillation

cycles, in what follows we will only use thresholds in a voltage interval that induces the cor-

rect number of spikes. Note that, for a given voltage trace and duration (Ttot), if two voltage

threshold generate the same number of spikes (Nspike), the mean ISI would be almost identi-

cal, approximately Ttot/Nspike. This observation holds for both experimental recordings and

numerical simulations.

Next we address the sensitivity of the interspike interval to the voltage threshold, within

the range over which the number of ISIs is invariant. (By “threshold” we refer throughout to

the voltage level used to detect the occurrence and measure the timing of an action potential,

rather than a physiological threshold associated with a spike-generation mechanism.)

From the earliest days of quantitative neurophysiology, the extraction of spike timing in-

formation from voltage traces recorded via microelectrode has relied on setting a fixed volt-

age threshold (originally called a Schmitt trigger, after the circuit designed by O.H. Schmitt

[57]). To our knowledge, it has invariably been assumed that the choice of the threshold or

trigger level was immaterial, provided it was high enough to avoid background noise and

4 Throughout this section, we use the term “threshold” in the data analysis sense of a Schmitt trigger [57],
rather than the physiological sense of a spike generation mechanism.
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Fig. 8: Histogram of voltage and number of spikes as a function of voltage threshold (Vth)

for one wild type Purkinje cell (same data as in Fig. 1A & C). The number of ISIs is found

by counting up-crossing times as defined in Def. 5. For this particular trajectory, the AHP

phase locates roughly in the interval [−58,−48] mV. The trajectory has 1248 full oscillation

cycles. When Vth is near −60 mV, it captures fewer spikes than the true value, and when

Vth ∈ [−57,−48], it tends to overestimate the number of spikes. For Vth ∈ [−48,−10], the

number of spikes is a constant (1248) that matches the number of full oscillations.

low enough to capture every action potential [21,38]. This assumption is generally left im-

plicit. Here, we show that, in fact, the choice of the trigger level (the voltage threshold used

for identifying spike timing) can cause a change in the variance of the interspike interval for

a given spike train by as much as 5%.

Fig. 9 provides evidence both from experimental traces recorded in vitro, and from nu-

merical simulations, that σ2
ISI is sensitive to the voltage threshold defining spike times. In

Fig. 9 A, we superimpose ISI standard deviations from fourteen wild type Purkinje cells,

plotted as functions of the the trigger voltage Vth. We rescale each plot by the standard devi-

ation of the ISI for each cell at Vth = −20 mV, which we define as σ̄. As shown in Fig. 9 A,

the cells recorded in vitro have a clear variability in the standard deviation as the voltage

threshold changes. Specifically, the standard deviation of ISI gradually increases as volt-

age threshold increases and then remains constant as the threshold approaches the peak of

the spikes. Two of the cells have larger variations in the standard deviation, with roughly a

3%−4% change; nine of them have a 1%−3% change; and three of them show 0.1%−1%
change.
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Fig. 9: Standard deviation of the interspike intervals (
√

σ2
ISI, cf. Def. 5) and standard de-

viation of the iso-phase intervals (
√

σ2
IPI, cf. Def. 6) as a function of voltage threshold. A:

Rescaled ISI standard deviation (σ̂) obtained from experimental data recordings from 14

wild type Purkinje cells. For experimental methods see §D. For each cell,
√

σ2
ISI is cal-

culated using voltage threshold ranging from -55 mV to -20 mV, and scaled by dividing

the stand deviation at voltage=-20 mV. B, C: standard deviation of ISI when ǫ = 1 and√
ǫ = 0.028 in equation (3), respectively. For each voltage threshold, 500 different traces

are generated with each trace containing roughly 1000 interspike intervals. Error bars in-

dicate the 95% confidence interval of
√

σ2
ISI at each threshold. Note the vertical axis is in

µsec. In C, each value of σ2
IPI is calculated for the mean–return-time isochron intersecting

the deterministic limit cycle at the voltage specified.

We applied a similar analysis to seventeen PCs with the leaner mutation [72]. In this

case, one cell had a variation of roughly 1% in the standard deviation, five cells with vari-

ations around 0.2%, and the remaining without an obvious change (data not shown). This

difference between cells derived from wild type and leaner mutant mice is an interesting

topic for future study.

We observe a similar variability of σ2
ISI in numerical simulations using our stochastic

Langevin HH model (cf. eqn. (3)). Fig. 9 B and C plots two examples showing the change
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in σ2
ISI as voltage threshold varies. For a given noise level (ǫ) and a voltage threshold (Vth),

a single run simulates a total time of 9000 milliseconds (ms), with a time step of 0.008 ms,

consisting of at least 600 ISIs, which was collected as one realization for the corresponding

σISI(ǫ, Vth). The mean and standard deviation of the σISI(ǫ, Vth) is calculated for 1,000 re-

alizations of the aforementioned step for each pair of ǫ and Vth. The error bars in Fig. 9 B

and C indicate 95% confidence intervals of the standard deviation. As illustrated in Fig. 9 B

and C, the standard deviation gradually increases as the trigger threshold increases during

the AHP, and this trend is observed for both small and large noises. When ǫ = 1, the noisy

system in eqn. (3) is not close to the deterministic limit cycle, and there is not a good ap-

proximation for the phase response curve. When
√
ǫ = 0.028, the system eqn. (3) can be

considered in the small-noise region and thus we can find a corresponding phase on the limit

cycle as the asymptotic phase. As shown in Fig. 9 C, unlike the variance of ISI, the variance

of IPI is invariant with the choice of the phase threshold (φ).

4.2 Numerical Performance of the Decomposition Theorem

In this section, we will apply estimation methods based on Theorem 1 and Corollary 1 to

the decomposition of variance of interspike intervals (ISIs, σ2
ISI) and variance of inter-phase

intervals (IPIs, σ2
IPI), and numerically test their performance.

Fig. 10 presents a detailed comparison of the predicted and measured values of σ2
ISI and

σ2
IPI, when the simulations only include noise from the K+ channels. The channel noise

generated by the Na+ edges is suppressed by applying the stochastic shielding (SS) method

to eqn. (3). For each plot in Fig. 10, 1000 repeated trials are collected and each trial simulates

a total time of 15,000 milliseconds which generates more than 1000 ISIs or IPIs. Given our

previous observation that σ2
ISI depends on the choice of voltage threshold, we selected four

different voltage thresholds for comparison.

In Fig. 10, red dots in panels A1-A4 mark the ISI variance measured directly from

simulated voltage traces, using the indicated Vth as the trigger voltage. Green stem-and-

line marks show the mean and 95% confidence intervals of the direct ISI variance measure,

calculated from all 1000 samples. The blue dotted line shows the ISI variance predicted

from the limit cycle based estimate of the IPI variance (eq. (91)), and cyan squares show

individual estimates using the point-mass prediction (eq. (95)). Note each point mass is an

independent random variable; these estimates cluster tightly around the limit cycle based

estimate. Panel B shows the variance of the inter-phase intervals calculated directly from

the same 1000 trajectories (as described below), marked in black circles. Green stem-and-

line marks show the mean and 95% C.I. for the IPI variance. The blue dotted line and cyan

squares represent the same LC-based and point mass based IPI variance estimates as in

A1-A4.

As shown in Fig. 10 (A1, A2, A3, A4 and B) the point mass prediction and the LC

prediction of the IPI variance give almost the same result. Specifically, the LC prediction ≈
3.84×10−3 and the mean of the point mass predictions ≈ 3.83×10−3 with a variance of ≈
6.3×10−11. Therefore, the LC prediction based on Corollary 1 gives a good approximation

to the point mass prediction based directly on Theorem 1. For a given edge (or a group

of edges) the LC prediction depends linearly on the scaling factor, ǫ, and can be easily

calculated for various noise levels. Throughout the rest of this section, we will use the LC

prediction as our predicted contribution from the decomposition theorem.

The asymptotic phase is calculated using equation (94) for each point on the stochastic

trajectory. For a given voltage threshold, Vth, the corresponding iso-phase section is the
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Fig. 10: Variance of ISIs (σ2
ISI) and IPIs (σ2

IPI) with only K+ edges included using the

stochastic shielding method. Cyan dots: point mass prediction (cf. eqn. (94)). Solid blue line:

limit cycle prediction. 1000 repeated simulations are plotted and for each of the simulation,

more than 1000 ISIs (or IPIs) are recorded. Each sample point in the plot represents the vari-

ance of ISIs and IPIs for one realization. A1-4: Voltage threshold Vth = −55,−50,−20, 0
mV, with noise level

√
ǫ = 0.028 (effective number of K+ channels Ntot ≈ 2.30× 106). B:

Iso-phase section is the mean-return-time isochron intersecting the deterministic limit cycle

at Vth = −50 mV.

mean-return-time isochron intersecting the deterministic limit cycle at Vth. As previously

observed, the variance of the IPIs is invariant with respect to the choice of the reference

iso-phase section. As shown in Fig. 10 B, the prediction of variance of IPIs (≈ 3.83×10−3

ms2) has a good match with the mean value of numerical simulations (≈ 3.85×10−3 ms2).

The 95% confidence interval of the IPIs are also plotted in Fig. 10 B, which further indicates

the reliability of the prediction.

As shown in Fig. 10 (A1, A2, A3 and A4), with Vth ∈ [−55, 0] mV, the numerical real-

izations of σ2
ISI are close to the predictions from the main theorem. However, the accuracy

depends on the choice of the voltage threshold. As noted above, when the trigger voltage

Vth is set below −50mV (for example, −55mV in Fig. 10,A1), the measured variance of

ISIs falls below the value predicted from the IPI variance. When Vth ≈ −50mV, the empir-
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ically observed value of σ2
ISI gives the best match to the IPI variance (cf. Fig. 9,C). When

the trigger voltage Vth exceeds −50mV (for example, −20mV in Fig. 10,A3, and 0mV

in Fig. 10,A4), the empirically observed variance of the ISIs is consistently higher than

the IPI variance. Nevertheless, although the empirically observed numerical values of σ2
ISI

(≈ 4.00× 10−3ms2) overestimate the IPI-derived value when Vth > −50mV, they remain

close to the IPI value. Fig. 10 panels A1-4 show that even though the IPI-based prediction of

the ISI variance works best when the trigger voltage is set to Vth ≈ −50mV, the IPI-based

variance falls within the 95% confidence interval of σ2
ISI regardless of the value of Vth cho-

sen. Therefore, we can conclude that Theorem 1 and Corollary 1 give a good approximation

to the value of σ2
ISI, at least at noise level

√
ǫ = 0.028.

Practically, the voltage-based interspike interval variance, σ2
ISI, is a more widely used

quantity [26,30,40,64,68] because it can be calculated directly from electrophysiological

recordings. The inter-phase interval variance, σ2
IPI, however, can not be directly measured or

calculated. Even given the stochastic model with its realizations, calculating the asymptotic

phase and finding the IPIs are numerically expensive. Despite its lack of consistency, as

shown in Fig. 10 (A3 and A4), the σ2
ISI can approximately be decomposed using Theorem 1

and Corollary 1, which offer predicted values that fall in the 95% confidence interval of σ2
ISI.

Fig. 11 summarizes the overall fit of the decomposition of variance of ISIs to the pre-

diction from Theorem 1 and Corollary 1. We applied the stochastic shielding method by

including each directed edge separately in the transition graph (cf. Fig. 2). In Fig. 11 (B and

D), the variance of the ISIs is compared with the value obtained with the limit cycle based

prediction from eqn. (91).

Fig. 11 (A and C) shows the log-log plot for the ISI variance (σ2
ISI) of each individual

edge as a function of the noise level, ǫ, in the range of [e−10, e5], measured via direct

numerical simulation using Vth = −20 mV. The color for each edge ranges from red to blue

according an ascending order of edge numbers (1-8 for K+ and 1-20 for Na+). The total

effective number of Na+ channels is Mtot = Mref/ǫ and of K+ channels is Ntot = Nref/ǫ,
where the reference channel numbers are Mref = 6000 and Nref = 1800 (described in §2.5).

That is, we consider ranges of channel numbers 40 . Mtot . 1.3 × 108 for Na+ and

12 . Ntot . 4.0 × 107 for K+. Thus, we cover the entire range of empirically observed

single-cell channel populations (cf. Tab. 1).

As shown in Fig. 11 (A and C), the linear relation between σ2
ISI and ǫ predicted from

Theorem 1 is numerically observed for all 28 directed edges in the Na+ and K+ transition

graphs (cf. 2) for small noise. The same rank order of edge importance discussed in [47]

is also observed here in the small noise region. Moreover, the smaller the edge importance

measure for an individual edge, the larger the value of ǫ before observing a breakdown of

linearity.

Fig. 11 (B and D) presents the log-log plot for the ISI variance (σ2
ISI, black solid line)

when including noise only from the K+ edges and Na+ edges, respectively. As in panels A

and C, the noise level, ǫ is in the range of [e−10, e5]. The LC prediction for eqn. (91) from

Theorem 1 when including noise from only the K+ (or Na+) channels is plotted in dashed

blue. For example, the linear noise prediction for the potassium channels alone is

σ2
ISI ≈

EK
∑

k=1

σ2
ISI,k (96)

where EK = 8 (similarly, ENa = 20), and σ2
ISI,k is the LC prediction for the kth edge. As

shown in Fig. 11 panel B, the linear prediction matches well with the numerically calculated

σ2
ISI up to ln(ǫ) ≈ −3.0 (indicated by the blue arrow) which corresponds to approximately
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Fig. 11: Numerical performance of the decomposition for the ISI variance for Na+ and

K+ kinetics. A&C: σ2
ISI for individual K+ (A) and Na+ (C) edges. Ek marks the kth edge,

k ∈ {1, . . . , 8} for K+ and k ∈ {1, . . . , 20} for Na+. B&D: Linearity of superposition

for K+ (B) and Na+ (D) channels. See text for details. σ2
ISI with noise from all K+ (Na+)

edges included (black line), with only the most significant edges using stochastic shielding

(red line) included, and the linear prediction from Theorem 1 (blue dashed line).

36,000 K+ channels. For Na+, the theorem gives a good prediction of the numerical σ2
ISI up

to ln(ǫ) ≈ −1.9 (indicated by the blue arrow) which corresponds to approximately 40,000

Na+ channels. These channel population sizes are consistent with typical single-cell ion

channel populations, such as the population of Na+ channels in the node of Ranvier, or the

Na+ and K+ channels in models of the soma of a cerebellar Purkinje cell (cf. Tab. 1).

Finally, we apply stochastic shielding (SS) to both the K+and Na+channels by only

including noise from the edges making the largest contributions in Fig. 11 panels A and C.

For the K+ channel, we include edges 7 and 8, and for Na+, we include edges 17, 18, 19 and

20. As shown in Fig. 11 panels B and D, the SS method (solid red line) gives a good match

to the overall σ2
ISI for all noise intensities ǫ ∈ [e−10, e5], with numbers of K+ channels

≥ 12 and Na+ channels ≥ 40.

Fig. 12 shows the overall performance of the prediction of σ2
ISI based on Theorem 1,

when noise from all 28 directed edges are included (black line). The theorem is stated as an

asymptotic result in the limit of weak noise. The predicted ISI variance using the theorem
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Fig. 12: Numerical performance of the decomposition for the ISI variance of the full sys-

tem. A: Log-log plot of σ2
ISI for ǫ ∈ [e−10, e5]. ISI variance contribution σ2

ISI with noise

from all 28 edges included (black line), only from 8 K+ edges (dashed grey), only from 20

Na+ edges (solid grey), and SS using noise from six edges (red line, see text for details). The

linear prediction from Theorem 1 for the whole system is plotted for comparison (dashed

blue line.) B: Coefficient of variation (C.V.), or mean ISI divided by
√

σ2
ISI, vs. log(ǫ). Same

color scheme as A. Compare Fig. 1, which shows data from two cerebellar Purkinje cells, a

wild-type cell with C.V. ≈ 0.039 and a cell from a leaner mouse with C.V. ≈ 0.30.

(dashed blue curve) matches the ISI variance obtained from the full numerical simulation

for modest noise levels, up to ln(ǫ) ≤ −3.9, corresponding to & 90,000 K+ channels and

& 300,000 Na+ channels. These population sizes are at the high end of the range of typical

numbers of channels neurons (cf. Tab. 1).

For smaller ion channel populations (larger noise levels), the linear approximation breaks

down, but the stochastic shielding approximation remains in good agreement with full nu-

merical simulations. Fig. 12 shows σ2
ISI from simulations using the SS method including only

noise from the six most important edges (edges 7-8 in K+ and 17-20 in Na+), plotted in solid

red. For ln(ǫ) & −3.5, both the full simulation and the SS simulation show a rapid increase

in σ2
ISI with increasing noise level. This dramatic increase in timing variability results when

increasing noise causes the neuron to “miss” spikes, that is, to generate a mixture of regular

spiking and small subthreshold oscillations [51]. Including noise from all 20 Na+ channel

edges (gray line) or all eight K+ channel edges (gray dashed line) shows a similar jump,

albeit delayed to higher values of ǫ for the Na+ channel. Note also the Na+ channel alone

has a quantitatively smaller contribution to ISI variability for the stochastic HH model than

the K+ channel for all noise levels in the linear region.
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For larger noise levels (ln(ǫ) & −2), all simulations become sufficiently noisy that

ln(σ2
ISI) collapse to a similar level, approximately 3. As the interspike interval is a nonnega-

tive random quantity with a constrained mean (bounded by the reciprocal of the firing rate),

once the spike train has maximal variability, further increasing the strength of the channel

noise does not drive the ISI variance appreciably higher. However, although the ISI vari-

ance appears approximately to saturate with increasing noise, the coefficient of variation

(C.V.,
√

σ2
ISI/I) continues to increase (Fig. 12B), because the mean ISI (I) decreases with

increasing noise (the firing rate increases with increasing noise, data not shown).

5 Discussion

We prove in §3 that the numerically calculated edge importance can be quantified from

the molecular-level fluctuations of the stochastic Hodgkin-Huxley (HH) kinetics. Specifi-

cally, we combine the stochastic shielding approximation with the re-scaled Langevin mod-

els (eqn. (3)) of the HH model to derive analytic results for decomposing the variance of

the cycle time (the iso-phase intervals) for mean–return-time isochrons of the stochastic HH

models. We prove in theory, and confirm via numerical simulations, that in the limit of small

noise, the variance of the iso-phase intervals decomposes linearly into a sum of contributions

from each edge. We show numerically that the same decomposition affords an efficient and

accurate estimation procedure for the interspike intervals, which are experimentally observ-

able. Importantly, our results apply to current clamp rather than to voltage clamp conditions.

Under current clamp, a stochastic conductance-based model is an example of a piecewise-

deterministic Markov process (PDMP). We show in §4.2 that our theory is exact in the limit

of small channel noise (equivalently, large ion channel population size); through numerical

simulations we demonstrate its applicability even in a range of small to medium noise levels,

consistent with experimentally inferred single-cell ion channel population sizes. In addition,

we present the numerical performance of the SS method under different scenarios and argue

that the stochastic-shielding approximation together with the 14× 28D Langevin represen-

tation give an excellent choice of simulation method for ion channel populations spanning

the entire physiologically observed range.

Our 14 × 28D Langevin model (eqn. (3)) can be shown to be pathwise equivalent to a

class of Langevin models on a 14D state space [47]. The first such model was introduced by

Fox and Lu [19] and subsequently investigated by [23]. Pathwise equivalence of two models

implies that they have the same distribution over sample paths, hence identical moments

including moments related to first-passage and return times. One could undertake the same

investigation into the variability of spike timing as in this paper using Fox and Lu’s for-

mulation, however the 14× 28D representation lends itself to an elegant application of the

stochastic shielding approximation [53,56,55] that would be cumbersome to apply to other

formulations. Moreover, as shown in [47], the 14 × 28D formulation is at least as fast or

faster than its pathwise equivalent alternatives, while having (necessarily) the same accuracy

(cf. Fig 12). Thus we concur with the assessment of [42] that the best combination of speed

and accuracy for Langevin-type simulation of stochastic conductance based models is given

by the diffusion approximation simulations [42], while we treat each edge as an independent

noise source, combined with stochastic shielding.

Initially stochastic shielding was introduced for both voltage clamp and current clamp

scenarios [53], but rigorous investigation of the method [56,55] were restricted to voltage

clamp. Stochastic conductance-based models under current clamp comprise hybrid or piece-

wise deterministic systems (cf. Fig.2 C), while systems under fixed-voltage-clamp corre-
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spond to time-invariant discrete-state Markov chains, for which the theory is well established

[56].

5.1 Number of Channels in Different Cell Types

Estimated numbers of Na+ and K+ channels in different cell types

Ion Type of cell Number of channels Reference

Na+

chromaffin cells 1,800-12,500 [16,69]a

cardiac Purkinje cells &325,000 [35]b

node of Ranvier 21,000-42,000 [67]c

squid axon (1mm)d &18,800 [15]d

pyramidal cell &17,000 [15]d

Purkinje cellg 47,000-158,000 [18,66]d,f,g

pre-BötC neuronsh 56-5,600 [9,15]d,f,h

K+

squid axon (1mm)d &5,600 [15]d

pyramidal cell &2,000 [15]d

Purkinje cellg 3,000-55,000 [18,66]d,e,g

pre-BötC neuronsh 112-2,240 [9,15]d,e,h

Table 1: Details of the data sources:

(a) Na+ density: 1.5-10 channels/µm2[16], the average diameter of rounded chromaffin

cells is d ≈ 20µm, Area=πd2 [69].

(b) Na+ density: 260 channels/µm2 [35], and diameter of roughly 20µm [35].

(c) Number of Na+ channels in Tab. 1 from [67].

(d) Na+ density: 60 channels/µm2 in squid axon, and 68 channels/µm2 in pyramidal axon

(Tab. S1 in [15]). K+ density: 18 channels/µm2 in squid axon, and 8 channels/µm2 in

pyramidal axon (Tab. S1 in [15]). Membrane area: squid axon: 0.1 µm diameter and

1mm length (Fig. S2 in [15]); pyramical cell: 0.08µm diameter with 1 mm length

(Fig. S1 in [15]). Single voltage-gated ion channel conductance is typically in the range

of 5-50 pS, and 15-25 pS for Na+ (p. 1148 [15]).

(e) Single K+ channel conductance ([66]): inward rectifier in horizontal cells (20-30 pS in

62-125 mM K+, 9-14◦C); skeletal muscle (10 pS in 155 mM K+, 24-26◦C); egg cells

(≈6 pS for 155 mM K+, 14-15◦C); heart cells (27 pS for 145 mM K+ at 17-23◦C; 45

pS for 150 mM K+ at 31-36◦C).

(f) Single Na+ channel conductance is ≈14 pS in squid axon, other measurements under

various conditions show results in the range of 2-18 pS (Tab. 1 in [4]).

(g) Maximal conductance for different K+ channels (Tab. 1 in [18]): SK K+ (10 mS/cm2),

highly TEA K+ (41.6 mS/cm2) sensitive BK K+ (72.8 mS/cm2); membrane area (1521

µm2). Maximal conductance for resurgent Na+ (156 mS/cm2). Note that the range of

K+ channels provided here is for each type of K+ channel, not the total number of

K+ channels.

(h) Maximal conductance (ḡion) in pacemaker cells of the pre-Bötzinger complex (pre-

BötC) [9]: ḡNaP = 2.8 nS for persistent Na+ current, ḡNa = 28 nS for fast Na+ current,

and ḡK ∈ [5.6,11.2] nS for different types of K+ channels (p. 384-385).

Channel noise arises from the random opening and closing of finite populations of ion

channels embedded in the cell membranes of individual nerve cells, or localized regions
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of axons or dendrites. Electrophysiological and neuroanatomical measurements do not typ-

ically provide direct measures of the sizes of ion channel populations. Rather, the size of

ion channel populations must be inferred indirectly from other measurements. Several pa-

pers report the density of sodium or potassium channels per area of cell membrane [15,16,

35]. Multiplying such a density by an estimate of the total membrane area of a cell gives

one estimate for the size of a population of ion channels. Sigworth [67] pioneered statistical

measures of ion channel populations based on the mean and variance of current fluctua-

tions observed in excitable membranes, for instance in the isolated node of Ranvier in axons

of the frog. Single-channel recordings [39] allowed direct measurement of the “unitary”,

or single–channel-conductance, goNa or goK. Most conductance-based, ordinary differential

equations models of neural dynamics incorporate maximal conductance parameters (gNa or

gK) which nominally represents the conductance that would be present if all channels of

a given type were open. The ratio of g to go thus gives an indirect estimate of the num-

ber of ion channels in a specific cell type. Tab. 1 summarizes a range of estimates for ion

channel populations from several sources in the literature. Individual cells range from 50

to 325,000 channels for each type of ion. In §4.2 of this thesis, we will consider effective

channel populations spanning this entire range (cf. Figs 10, 11).

5.2 Different Methods for Defining ISIs

There are several different methods for detecting spikes and quantifying interspike intervals

(ISIs). In one widely used approach [21,26,30,38,40,64,68], we can define the threshold

as the time of upcrossing a fixed voltage, which is also called a Schmitt trigger (after O.H.

Schmitt [57]). We primarily use this method in this thesis.

As an alternative, the time at which the rate of change of voltage, dV/dt, reaches its

maximum value (within a given spike) has also been used as the condition for detecting

spikes [3]. However, in contrast with the voltage-based Schmitt trigger, using the maximum

of dV/dt to localize the spike does not give a well-defined Poincaré section. To see this,

consider that for a system of the form (3) we would have to set

d2V

dt2
=

d

dt
f(V,N) (97)

= f(V,N)
∂f

∂V
(V,N)− dM8

dt
gNa(V − VNa)−

dN5

dt
gK(V − VK)

equal to zero to find the corresponding section. The difficulty is evident: for the Langevin

system the open fraction M8 (resp. N5) of sodium (resp. potassium) channels is a diffusion

process, and is not differentiable, so “dM8/dt” and “dN5/dt” are not well defined. More-

over, even if we could interpret these expressions, the set of voltages V and gating variables

N for which (97) equals zero depends on the instantaneous value of the noise forcing, so

the corresponding section would not be fixed within the phase space. For a discrete state

stochastic channel model, the point of maximum rate of change of voltage could be deter-

mined post-hoc from a trajectory, but again depends on the random waiting times between

events, and so is not a fixed set of points in phase space. For these reasons we do not fur-

ther analyze ISIs based on this method of defining spikes, although we nevertheless include

numerical ISI variance based on this method, for comparison (see Fig. 13 below).

As a third possibility, used for example in [26], one sets the voltage nullcline (dV/dt =
0), at the top of the spike, as the Poincaré section for spike detection. That is, one uses

a surface such as Speak = {(v,n) | f(v,n) = 0} ∩ {v > −40}. This condition does
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correspond to a well-defined Poincaré section, albeit one with a different normal direction

than the voltage-based sections.

In contrast to the ISI variance, which depends to some degree on the choice of spike-

timing method used, the mean ISI is invariant. Both in numerical simulations and from

experimental recordings, the mean interspike interval using any of the three methods above

is very stable. But the apparent ISI variance changes, depending on the method chosen.

We observe in both real and simulated voltage traces that the ISI variance, σ2
ISI, de-

pends not only on the method for identifying spikes, but also on the voltage used for the

Schmitt trigger. To our knowledge this sensitivity of ISI variance to trigger voltage has not

been previously reported. Generally speaking, from analyzing both simulation and recorded

data from in vitro studies, the ISI variance is not a constant, but increases slightly as the

voltage threshold defining a “spike” is increased (cf. §4.1). Thus the ISI variance is not an

intrinsically precisely invariant quantity for model or real nerve cells.

Fig. 13 shows σ2
ISI obtained empirically from electrophysiological recordings of Purk-

inje cells in vitro (upper plot) and from simulations of the stochastic Hodgkin-Huxley system

(lower plot) with a small noise amplitude (
√
ǫ = 0.028) using the three methods for spike

time extraction described above, for a single voltage trace comprising 785 interspike inter-

vals. The ISI variance as a function of trigger voltage increases steadily from below 7.8 ms2

to above 7.9 ms2 as the trigger voltage increases from -50 mV to -20 mV. In contrast, the

ISI variance obtained from the peak voltage (dV/dt ≈ 0, obtained using linear interpola-

tion of the first-order voltage difference) or the maximum slope condition (d2V/dt2 ≈ 0
and dV/dt > 0, obtained using linear interpolation of the second-order voltage difference)

give nearly indistinguishable values (red and blue superimposed traces in Fig. 13A) that lie

slightly above the largest value of σ2
ISI at the upper range of the trigger voltage.

A similar phenomenon occurs for Langevin simulations of the HH model with small

noise (Fig. 13B). In this case, the ISI variance based on maximum slope falls slightly below

the variance based on the spike peaks; both are similar to the variance obtained with a

Schmitt trigger close to −20 mV. This similarity at higher trigger voltages probably occurs

because the inflection point of each spike occurs at nearly the same voltage (at least, for

small noise).

As shown in §3 and §4.2, the inter-phase interval (IPI, also refered as iso-phase interval),

based on the crossing time of iso-phase sections, provides a uniform σ2
IPI for all choices

of reference iso-phase sections (cf. Fig. 10). Fig. 13B shows the IPI variance (in black)

for different mean–return-time isochronal sections, each passing through the limit cycle

trajectory at the specified voltage.

For experimental voltage recordings, we cannot specify the interphase variables without

a measurement or estimate of the entire state vector. Fortunately, the sensitivity of ISI vari-

ance to voltage threshold, while statistically significant, is relatively small (a few percent),

as voltage is the practical measure available for marking spike times. Moreover, as shown

§4.2, Theorem 1 and Corollary 1 can be is well suited to approximating the variance of ISIs

(σ2
ISI) despite its threshold-dependence.

For moderate to large noise Langevin model traces (ǫ ≈ 1), we also see a systematic

shift in σ2
ISI with increasing Schmitt-trigger voltage. However, the size of the shift is an

order of magnitude smaller than the variability of the variance across trials. Fig.14 plots

σ2
ISI versus trigger voltage, as well as the ISI variance based on the peak voltage and the

maximal slope conditions, for ten different samples of the Langevin HH model with ǫ = 1,

each comprising & 1000 interspike intervals. In each case σ2
ISI is a smoothly increasing

function of the trigger voltage, but the range of the increase in variance is approximately

0.25 ms2, while the sample variance of the ISI variance itself is approximately 3.5 ms2
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Fig. 13: Variance of interspike intervals using different threshold conditions. A: σ2
ISI of

spikes from a single trace of a wild type Purkinje cells comprising 785 ISIs. σ2
ISI = 7.9151

when setting dv/dt = 0 as the threshold (dashed red), and σ2
ISI = 7.9146 when maxi-

mum dv/dt is set to be the threshold condition (blue). Different voltage thresholds show

increasing σ2
IS with voltage (gray). For experimental methods see §D. B: ISI variance from

a Langevin HH (cf. eq. 3) simulation with small noise (
√
ǫ = 0.028) comprising c. 1000

ISIs. Labels as in A. The variance of the inter-phase intervals is constant regardless of the

particular isochron chosen (black).

across the ten trials, an order of magnitude larger. For comparison, the sample variance of

σ2
ISI across c. 4000 trials, cf. Fig. 10, is approximately 3 × 10−7 ms2. The source of the

variance for the larger noise value may involve the introduction of extra or missing spikes

from the regular spiking pattern, cf. Fig. 12. Thus, although σ2
ISI based on the standard

Schmitt trigger approach is sensitive to the trigger value, the IPI variance estimate given by

Theorem 1 lies within the range of this sensitivity, which for realistic noise levels is small

compared to the intrinsic variability of the variance across trials.
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Fig. 14: Model simulation of σ2
ISI for the Langvin model (eqn. 3) using different thresholds

when ǫ = 1. Ten repeated simulations are plotted, with each containing roughly 1000 ISIs.

Solid plus: σ2
ISI using different voltages as threshold. Dashed: dV/dt = 0 as the spike

condition. Diamonds: maximal dV/dt condition. Each color represents a different sample

with independent noise. Variance is in units of ms2.

5.3 Relation to Other Methods

Ermentrout and colleagues [13] developed an asymptotic treatment of the interspike interval

variance as part of their analysis of the variance of phase response curves; the variance of the

phase response in the absence of a perturbing input is simply the ISI variance. Our analysis

was inspired in part by the approach of [13] in that we study the accumulation of variance

of the timing variable (the asymptotic phase function for the unperturbed system) over a

single period. Our approach differs from that of [13] in several key respects. While [13]

used an additive Gaussian white noise current to obtain stochastic trajectories, in our model

the fluctuations arise from channel noise based on a detailed 14 × 28 D Langevin descrip-

tion of the Hodgkin-Huxley system. In addition [13] truncated the small-ǫ expansion of the

phase dynamics at first order, i.e. they neglected terms at O(ǫ2) and higher orders. However,

their expression for the ISI variance begins with a term that is O(ǫ2), suggesting a possibly

inconsistency in their result. In contrast, we retain terms through O(ǫ2), and demonstrate

excellent agreement between full numerical and semi-analytic results in the small-ǫ regime.
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Finally, we explicitly construct the ISI variance as a first-passage time problem, allowing us

to leverage Dynkin’s theorem, which goes beyond the treatment given in [13].

There is a rich literature on the variability of interspike intervals in low-dimensional

neural models, such as integrate and fire models with or without an adaptation current [30,

61,65,17]. In this literature, there is significant interest in serial correlation structure of

successive interspike intervals [11,31,62]. However, to our knowledge, the literature since

[13] has not further addressed analytical treatment of interspike interval variance for higher

dimensional models such as the Hodgkin-Huxley system.

Jan-Hendrik Schleimer’s thesis [52] addresses the moments of the interspike interval

through a different approach. In his thesis, Schleimer assumes an a prior reduction from

physical coordinates (voltage and gating variables) to a one-dimensional phase description

φ ∈ [0, 1). He formulates a stochastic Langevin equation for φ using Linaro’s model [29]

which is similar (but not pathwise equivalent) to [19,42,47] of the form (eqn. (5.1) on page

47)
dφ

dt
= ω + Z(φ)⊺

√

D(φ)ξ(t),

where ξ is a delta-correlated Gaussian white noise disturbance vector, Z is the infinitesimal

phase response curve of the deterministic limit cycle system, and D(φ) is a noise coefficient

matrix. If Z is n-dimensional then ξ(t) is assumed to be n-dimensional as well, and D is

n× n. Using the Stratonovich interpretation, he derives a local phase-specific increment of

the timing variability of the form (eqn. (5.3) on page 47)

σ2(φ) = Z(φ)⊺D(φ)Z(φ).

Implicitly,
∫ 1
0
σ2(φ) dφ gives the ISI variability. To compare our approach with Schleimer’s,

we give an explicit expression for σ2(φ) as a sum of contributions from each directed edge,

at each phase of the limit cycle:

σ2(s) =

(

∑

k

αk(V (S))Xi(k)(s)ζ
⊺

kZ(s)Z
⊺(s)ζk

)

1

T0
, (98)

where the sum runs over directed edges in the ion channel transition graph(s), and the factor

of T−1
0 reflects changing the range of phase from [0, T0] to [0, 1].

5.4 Limitations

Like other approaches in the literature, our calculations are based on a linear approximation

to the effects of the noise. However, Ito’s formula (25) includes terms both of order
√
ǫ

and ǫ. The latter weights the Hessian matrix of the asymptotic phase function, ∂2
ijφ. In our

main result (41) we neglected the contribution of this higher order term. Similar truncations

of either Taylor’s expansion or Ito’s formula are seen throughout the literature, for example

eqn. (3.2.8) in [27], eqn. (120) in [63], and eqn. (2) in [13]. These authors favor an immediate

phase reduction when ǫ is small, setting X(t) ≈ X0(θ(t)) and

dφ

dt
= 1 +

√
ǫ (∇φ(X))⊺ · G(X) · dW(t) (99)

([63,27]). As in Kuramoto’s original phase reduction approach [27], we also evaluate the

infinitesimal phase response curve Z on the limit cycle throughout this thesis. This ommis-

sion of the Hessian term could possible cause additional discrepancies. Recent advances in
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the theory of nonlinear oscillators have provided means to obtain the asymptotic phase Hes-

sian [1,74,76] but we have not attempted to implement these calculations for our 14D HH

model.
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Appendices

A Model Parameters, Common Symbols and Notations

Symbol Meaning Value

C Membrane capacitance 1 µF/cm2

ḡNa Maximal sodium conductance 120 µS/cm2

ḡK Maximal potassium conductance 36 µS/cm2

gleak Leak conductance 0.3 µS/cm2

VNa Sodium reversal potential for Na+ 50 mV
VK Potassium reversal potential for K+ -77 mV
Vleak Leak reversal potential -54.4 mV
Iapp Applied current to the membrane 10 nA/cm2

A Membrane Area 100 µm2

Mtot Total number of Na+ channels 6,000

Ntot Total number ofK+ channels 18,00

Table 2: Parameters used for simulations in this paper.
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Subunit kinetics for Hodgkin and Huxley parameters are given by

αm(V ) =
0.1 ∗ (25− V )

exp(2.5− 0.1V )− 1
(100)

βm(V ) = 4 ∗ exp(−V/18) (101)

αh(V ) = 0.07 ∗ exp(−V/20) (102)

βh(V ) =
1

exp(3− 0.1V ) + 1
(103)

αn(V ) =
0.01 ∗ (10− V )

exp(1− 0.1V )− 1
(104)

βn(V ) = 0.125 exp(−V/80) (105)

AK(V ) =













D1(1) βn(V ) 0 0 0
4αn(V ) D1(2) 2βn(V ) 0 0

0 3αn(V ) D1(3) 3βn(V ) 0
0 0 2αn(V ) D1(4) 4βn(V )
0 0 0 αn(V ) D1(5)













,

ANa =

























D2(1) βm 0 0 βh 0 0 0
3αm D2(2) 2βm 0 0 βh 0 0
0 2αm D2(3) 3βm 0 0 βh 0
0 0 αm D2(4) 0 0 0 βh

αh 0 0 0 D2(5) βm 0 0
0 αh 0 0 3αm D2(6) 2βm 0
0 0 αh 0 0 2αm D2(7) 3βm

0 0 0 αh 0 0 αm D2(8)

























,

where the diagonal elements

Dk(i) = −
∑

j 6=i

Aion(j, i), k ∈ {1, 2} ion ∈ {Na,K}.

B Diffusion Matrix of the 14D Model

Define the state vector for Na+ and K+ channels as

M = [m00,m10,m20,m30, m01,m11,m21,m31]
⊺,

and N = [n0, n1, n2, n3, n4]
⊺, respectively.
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Symbol Meaning

X & x state vector (random variable & realization value)

M & m eight-component state vector for the Na+gates (random variable & realization value)

N & n five-component state vector for the K+gates (random variable & realization value)

C membrane capacitance (1 µF/cm2)

Iapp applied current (10 nA/cm2)

ḡion maximal conductance for ion ∈ {Na+,K+}

Vion reversal potential of ion ∈ {Na+,K+}

eNa
i & eK

i ith standard unit vector in R
8 & R

5

ζ ion
k = eion

j(k)
− eion

i(k)
stoichiometry vector for the kth edge, for ion ∈ {Na+,K+}

αk(v) voltage-dependent per capita transition rate along kth edge, 1 ≤ k ≤ 28

i(k) & j(k) source & destination nodes for kth edge

Mi(k) fractional occupancy of source node for kth edge

F(X) & f(x) deterministic part of the evolution equation (mean-field)

G, SNa, SK noise coefficient matrix for the the 14× 28D Langevin model, Na+gates and K+gates, resp.

∆k k-dimensional simplex in R
k+1 given by y1 + . . .+ yk+1 = 1, yi ≥ 0

D domain of the (stochastic) differential equation

V0 “nullcline” surface associated with the voltage variable, where f(v,m,n) = 0

S arbitrary section transverse to the deterministic limit cycle

Su isovoltage Poincaré section (where voltage is a constant u)

Su
0 , Su

+, & Su
− “null”, “inward current” & “outward current” surface for voltage u

and f(v,m,n) = 0, f(v,m,n) > 0& f(v,m,n) < 0, resp.

τ(x,S) first passage time (FPT) from a point x ∈ D to section S

T (x,S) mean first passage time (MFPT) from point x ∈ D to set S

S(x,S) the second moment of the FPT from a point x ∈ D to section S

τuk & τdk kth voltage surface upcrossing & downcrossing time

Ik kth interspike interval (ISI), for some reference voltage v0

I , H & σ2
ISI mean, 2nd moment, and variance of ISI

µk kth iso-phase crossing time

∆k kth iso-phase interval (IPI), for some reference phase φ0

T ǫ, Sǫ, σ2
IPI mean, 2nd moment, variance of iso-phase interval (for noise level ǫ)

σ2
φ,k & σ2

ISI,k contribution of kth edge to the IPI variance and the ISI variance, resp.

γ(t) deterministic limit cycle trajectory

T 0 period of deterministic limit cycle

φ(x) asymptotic phase function for deterministic limit cycle

Z(t) = ∇φ(γ(t)) infinitesimal phase response curve (iPRC) for deterministic limit cycle

T ǫ mean period for noise level set to ǫ

T 1 = ∂T ǫ

∂ǫ

∣

∣

∣

ǫ=0
sensitivity of the mean period to increasing noise level, in the small-noise limit

Tǫ(x) mean–return-time (MRT) phase function for noise level set to ǫ

T1(x) =
∂Tǫ(x)

∂ǫ

∣

∣

∣

ǫ=0
sensitivity of the phase function to noise in the small-noise limit

T0(x) MRT phase function for ǫ = 0. Note T0(x) = const − T 0
φ(x)
2π

for an arbitrary constant

Table 3: Table of Common Symbols and Notations.
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The matrices SK and SNa are given by

SK =
1√
Nref

















−
√
4αnn0

√
βnn1 0 0√

4αnn0 −√
βnn1 −

√
3αnn1

√
2βnn2

0 0
√
3αnn1 −

√
2βnn2

0 0 0 0

0 0 0 0

· · ·

· · ·

0 0 0 0

0 0 0 0√
2αnn2 −

√
3βnn3 −√

αnn3
√
4βnn4

0 0
√
αnn3 −

√
4βnn4













,

and

S
(1:5)
Na =

1√
Mref

































−√
αhm00

√
βhm01 −

√
3αmm00

√
βmm10 0

0 0
√
3αmm00 −√

βmm10 −√
αhm10

0 0 0 0 0

0 0 0 0 0
√
αhm00 −√

βhm01 0 0 0

−√
βhm11 0 0 0 0

0 0 0
√
αhm20 −

√
βhm21

0 0 0 0 0

































S
(6:10)
Na =

1√
Mref

































0 0 0 0 0
√
βhm11 −

√
2αmm10

√
2βmm20 0 0√

2αmm10 −√
2βmm20 −√

αhm20
√
βhm21

0 0 0 0 0

0 0 0 0 0

−√
βhm11 0 0 0 0

0 0 0
√
αhm20 −

√
βhm21

0 0 0 0 0
































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S
(11:15)
Na =

1√
Mref

































0 0 0 0 0

0 0 0 0 0

−√
αmm20

√
3βmm30 0 0 0

√
αmm20 −√

3βmm30 −√
αhm30

√
βhm31 0

0 0 0 00

0 0 0 0
√
3αmm01

0 0 0 0 0

0 0
√
αhm30 −√

βhm31 0

































S
(16:20)
Na =

1√
Mref

































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−
√
3αmm01

√
βmm11 0 0 0

−
√
βmm11 −

√
2αmm11

√
2βmm21 0 0

0
√
2αmm11 −√

2βmm21 −√
αmm21

√
3βmm31

0 0 0
√
αmm21 −√

3βmm31

































,

where S
(i:j)
Na is the ith-jth column of SNa.

Note that each of the 8 columns of SK corresponds to the flux vector along a single

directed edge in the K+ channel transition graph. Similarly, each of the 20 columns of SNa

corresponds to the flux vector along a directed edge in the Na+ graph (cf. Fig. 2). Factors

Mref = 6000 and Nref = 1800 represent the reference number of K+ and Na+ channels

from Goldwyn and Shea-Brown’s model [23].

C Proof of Lemma 1

For the reader’s convenience we restate

Lemma 1 For a conductance-based model of the form (3), and for any fixed applied current

Iapp, there exist upper and lower bounds vmax and vmin such that trajectories with initial

voltage condition v ∈ [vmin, vmax] remain within this interval for all times t > 0, with

probability 1, regardless of the initial channel state, provided the gating variables satisfy

0 ≤ Mij ≤ 1 and 0 ≤ Ni ≤ 1.

Proof Let V1 = min
ion

{Vion} ∧ Vleak, and V2 = max
ion

{Vion} ∨ Vleak, where ion ∈ {Na+,K+}.

Note that by assumption, for both the Na+ and K+ channel, 0 ≤ M8 ≤ 1, 0 ≤ N5 ≤ 1.

Moreover, gi > 0, gleak > 0, therefore when V ≤ V1

dV

dt
=

1

C
{Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak)} (106)

≥ 1

C
{Iapp(t)− ḡNaM8 (V − V1)− ḡKN5 (V − V1)− gleak(V − V1)} (107)

≥ 1

C
{Iapp(t)− 0×M8 (V − V1)− 0×N5 (V − V1)− gleak(V − V1)} (108)

=
1

C
{Iapp(t)− gleak(V − V1)} . (109)
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Inequality (107) holds with probability 1 because V1 = min
i∈I

{Vi} ∧ Vleak, and inequal-

ity (108) follows because V − V1 ≤ 0, gi > 0 and M8 ≥ 0, N5 ≥ 0. Let Vmin :=

min
{

I
−

gleak
+ V1, V1

}

. When V < Vmin, dV
dt

> 0. Therefore, V will not decrease beyond

Vmin.

Similarly, when V ≥ V2

dV

dt
=

1

C
{Iapp(t)− ḡNaM8 (V − VNa)− ḡKN5 (V − VK)− gleak(V − Vleak)} (110)

≤ 1

C
{Iapp(t)− ḡNaM8 (V − V2)− ḡKN5 (V − V2)− gleak(V − V2)} (111)

≤ 1

C
{Iapp(t)− 0×M8 (V − V2)− 0×N5 (V − V2)− gleak(V − V2)} (112)

=
1

C
{Iapp(t)− gleak(V − V2)} . (113)

Inequality (111) and inequality (112) holds because V2 = max
i∈I

{Vi}∨Vleak, V −V2 ≥ 0,

gi > 0 and M8 ≥ 0, N5 ≥ 0. Let Vmax = max
{

Iapp

gleak
+ V2, V2

}

. When V > Vmax,
dV
dt

< 0. Therefore, V will not go beyond Vmax.

We conclude that if V takes an initial condition in the interval [Vmin, Vmax], and if 0 ≤
Mij , Ni ≤ 1 for all time, then V (t) remains within this interval for all t ≥ 0. Thus we

complete the proof of Lemma 1.

D Experimental Methods

Whole-cell current-clamp recordings of Purkinje cells from in vitro cerebellar slice prepara-

tions taken from wild type and leaner mice were performed in the laboratory of Dr. David

Friel (Case Western Reserve University School of Medicine), as described in [43]. Experi-

mental procedures conformed to guidelines approved by the Institutional Animal Care and

Use Committee at Case Western Reserve University. Voltage signals were sampled at a fre-

quency of 20kHz, filtered at 5–10 kHz, digitized at a resolution of 32/mV, and analyzed

using custom software written in IgorPro and Matlab.
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