Skip to main content
Log in

Pulse-frequency-dependent resonance in a population of pyramidal neuron models

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Stochastic resonance is known as a phenomenon whereby information transmission of weak signal or subthreshold stimuli can be enhanced by additive random noise with a suitable intensity. Another phenomenon induced by applying deterministic pulsatile electric stimuli with a pulse frequency, commonly used for deep brain stimulation (DBS), was also shown to improve signal-to-noise ratio in neuron models. The objective of this study was to test the hypothesis that pulsatile high-frequency stimulation could improve the detection of both sub- and suprathreshold synaptic stimuli by tuning the frequency of the stimulation in a population of pyramidal neuron models. Computer simulations showed that mutual information estimated from a population of neural spike trains displayed a typical resonance curve with a peak value of the pulse frequency at 80–120 Hz, similar to those utilized for DBS in clinical situations. It is concluded that a “pulse-frequency-dependent resonance” (PFDR) can enhance information transmission over a broad range of synaptically connected networks. Since the resonance frequency matches that used clinically, PFDR could contribute to the mechanism of the therapeutic effect of DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ashkan K, Rogers P, Bergman H, Ughratdar I (2017) Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 13:548–554

    Article  PubMed  Google Scholar 

  • Axmacher N, Mormann F, Fernndez G, Elger C, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52:170–82

    Article  PubMed  Google Scholar 

  • Benabid A, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:S73–S74

    Article  PubMed  Google Scholar 

  • Benzi R, Sutera A, Vulpiani A (1999) The mechanism of stochastic resonance. J Phys A Math Gen 14:L453

    Article  Google Scholar 

  • Birdno M, Kuncel A, Dorval A, Turner D, Gross R, Grill W (2012) Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation. J Neurophysiol 107:364–83

    Article  PubMed  Google Scholar 

  • Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking model neurons. Neural Comput 15:279–308

    Article  PubMed  Google Scholar 

  • Bulsara A, Zador A (1996) Threshold detection of wideband signals: a noise-induced maximum in the mutual information. Phys Rev E Stat Phys Plasmas Fluids 54:R2185–R2188

    Article  CAS  Google Scholar 

  • Bulsara A, Jacobs E, Zhou T, Moss F, Kish L (1991) Stochastic resonance in a single neuron model: theory and analog simulation. J Theor Biol 152:531

    Article  CAS  PubMed  Google Scholar 

  • Cecchi G, Sigman M, Alonso JM, Martinez L, Chialvo D, Magnasco M (2000) Noise in neurons is message dependent. Proc Natl Acad Sci USA 97:5557–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook E, Johnston D (1997) Active dendrites reduce location-dependent variability of synaptic trains. J Neurophysiol 78:2116–28

    Article  CAS  PubMed  Google Scholar 

  • Danziger Z, Grill W (2014) A neuron model of stochastic resonance using rectangular pulse trains. J Comput Neurosci 38:53–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schfer H, Boetzel K, Danieks C, Deutschlnder A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. New Engl J Med 355:896–908

    Article  CAS  PubMed  Google Scholar 

  • Durand DM, Kawaguchi M, Mino H (2013) Reverse stochastic resonance in a hippocampal ca1 neuron model. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2013:5242–5245

    Google Scholar 

  • Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauve S, Heslot F (1983) Stochastic resonance in a bistable system. Phys Lett A 97A:5–7

    Article  Google Scholar 

  • Gammaitoni L, Nggi P, Jung P, Marchesoni F (1999) Stochastic resonance. Rev Mod Phys 70

  • Grill W (2018) Temporal pattern of electrical stimulation is a new dimension of therapeutic innovation. Curr Opin Biomed Eng 8:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Hänggi P (2002) Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing. ChemPhysChem 3(3):285–290

    Article  PubMed  Google Scholar 

  • Hänggi P, Jung P, Zerbe C, Moss F (1993) Can colored noise improve stochastic resonance? J Stat Phys 70:25–47

    Article  Google Scholar 

  • Holtzheimer P, Hamani C (2014) Deep brain stimulation for treatment-resistant depression, pp 64–75

  • Huang W, Zhang K (2019) Approximations of Shannon mutual information for discrete variables with applications to neural population coding. Entropy 21(3):243

    Article  PubMed Central  Google Scholar 

  • Kawaguchi M, Mino H, Momose K, Durand DM (2009) Stochastic resonance can enhance information transmission of supra-threshold neural signals. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2009:6806–9

    Google Scholar 

  • Kawaguchi M, Mino H, Durand DM (2011a) Stochastic resonance can enhance information transmission in neural networks. IEEE Trans Biomed Eng 58:1950–8

    Article  PubMed  Google Scholar 

  • Kawaguchi M, Mino H, Momose K, Durand DM (2011b) Stochastic resonance with a mixture of sub-and supra-threshold stimuli in a population of neuron models. Conf Proc Ann Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Conf 2011:7328–31

    Google Scholar 

  • Knoll G, Lindner B (2021) Recurrence-mediated suprathreshold stochastic resonance. J Comput Neurosci 49:407–418

    Article  PubMed  PubMed Central  Google Scholar 

  • Landa PS, McClintock P (2000) Vibrational resonance. J Phys A Math Gen 33:L433–L438

    Article  Google Scholar 

  • Lozano A, Lipsman N, Bergman H, Brown P, Chabardes S, Chang J, Matthews K, McIntyre C, Schlaepfer T, Schulder M, Temel Y, Volkmann J, Krauss J (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15:1

    Article  Google Scholar 

  • Mcdonnell M, Ward L (2011) The benefits of noise in neural systems: Bridging theory and experiment. Nat Rev Neurosci 12:415–425

    Article  CAS  PubMed  Google Scholar 

  • Mina F (2013) Modeling the effects of direct and indirect electrical stimulation on neuronal dynamics: application to epilepsy (2013REN1S110). https://tel.archives-ouvertes.fr/tel-00955489

  • Mino H, Durand DM (2010) Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal ca1 neuron models with stochastic resonance. Biol Cybern 103:227–36

    Article  PubMed  Google Scholar 

  • Moss F, Pierson D, O’Gorman D (1994) Stochastic resonance: tutorial and update. Int J Bifurcat Chaos 4:1375

    Article  Google Scholar 

  • Moss F, Ward L, Sannita W (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophysiol 115:267–81

    Article  PubMed  Google Scholar 

  • Nozaki D, Mar D, Grigg P, Collins J (1999) Effects of colored noise on stochastic resonance in sensory neurons. Phys Rev Lett 82:2402–2405

    Article  CAS  Google Scholar 

  • Pycroft L, Stein J, Aziz T (2018) Deep brain stimulation: an overview of history, methods, and future developments. Brain Neurosci Adv 2:239821281881601

    Article  Google Scholar 

  • Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78:1186–1189

    Article  Google Scholar 

  • Santaniello S, Mccarthy M, Montgomery E, Gale J, Kopell N, Sarma S (2015) Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement

  • Snyder DL, Miller MI (1991) Random point processes in time and space, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Stacey W, Durand D (2000) Stochastic resonance improves signal detection in hippocampal ca1 neurons. J Neurophysiol 83:1394–402

    Article  CAS  PubMed  Google Scholar 

  • Stacey W, Durand D (2001) Synaptic noise improves detection of subthreshold signals in hippocampal ca1 neurons. J Neurophysiol 86:1104–12

    Article  CAS  PubMed  Google Scholar 

  • Stacey W, Durand D (2002) Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J Neurophysiol 88:2598–611

    Article  PubMed  Google Scholar 

  • Stein R, Gossen E, Jones K (2005) Neuronal variability: noise or part of the signal? Nat Rev Neurosci 6:389–97

    Article  CAS  PubMed  Google Scholar 

  • Stocks N, Mannella R (2001) Generic noise-enhanced coding in neuronal arrays. Phys Rev E Stat Nonlin Soft Matter Phys 64:030902

    Article  CAS  PubMed  Google Scholar 

  • Vincent UE, McClintock PVE, Khovanov IA, Rajasekar S (2021) Vibrational and stochastic resonances in driven nonlinear systems. Philos Trans Roy Soc A Math Phys Eng Sci 379:20200226

    Article  CAS  Google Scholar 

  • Warman E, Durand D, Yuen G (1994) Reconstruction of hippocampal ca1 pyramidal cell electro-physiology by computer simulation. J Neurophysiol 71:2033–45

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wang X, Wang Q, Wang Q (2020) A review of computational modeling and deep brain stimulation: applications to Parkinson’s disease. Appl Math Mech 41:1747–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Zador A (1998) Impact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol 79:1219–29

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, deng B, Qin Y, Men C, Wang J, Wei X, Sun J (2017) Weak electric fields detectability in a noisy neural network. Cognit Neurodyn 11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mino.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Cable equation of pyramidal neuron model

Fig. 1b shows the structure of a single pyramidal neuron model and the corresponding equivalent circuit whose cable equation is expressed as:

$$\begin{aligned}&C_m(x)\frac{\partial V_m(x,t)}{\partial t} + \frac{V_m(x,t)}{R_m(x)} + I_{\mathrm{ion}}(t) { + I_{\mathrm{syn}}(t) } \nonumber \\&\quad = h^2\frac{\partial }{\partial x}\frac{1}{R_a(x)} \left( \frac{\partial V_m(x,t)}{\partial x} + \frac{\partial V_e(x,t)}{\partial x}\right) \end{aligned}$$
(A.1)

where \(V_m(t)\), \(C_m\), \(R_m\), \(R_a\), h and \(I_{\mathrm{syn}}(t)\) stand for membrane potential, membrane capacitance, membrane resistance, axial resistance, and infinitesimal length, and synaptic input from other neurons, respectively. The extracellular potential \(V_e(x,t)\) is represented as

$$\begin{aligned} V_e(x,t)=\frac{\rho _{exp}}{4 \pi z_d} \, I_{\mathrm{pulse}}(t) \end{aligned}$$
(A.2)

where the \(\rho _{ext}\), and \(z_d\) denote extracellular resistivity, and the distance between the electrode and the fiber at x, respectively. The pulsatile HFS \(I_{\mathrm{pulse}}(t)\) is expressed as:

$$\begin{aligned} I_{\mathrm{pulse}}(t) = \left\{ \begin{array}{l} I_{p} \displaystyle \sum _{n=0} \{ u(t- n\tau _{\mathrm{int}}) -2 u(t-w- n\tau _{\mathrm{int}}) \\ ~~~~~~~~+ u(t-2w- n\tau _{\mathrm{int}}) \} \\ ~~~~~~~~~~~~~(n\tau _{\mathrm{int}} \le t < n\tau _{\mathrm{int}}+2w) \\ 0 ~~~~~~~~~~~~(\mathrm{otherwise}) \end{array} \right. \end{aligned}$$
(A.3)

where \(I_{p}\) denotes the amplitude of pulsatile stimuli set at 14, 15, or 16 \(\mu A\), \(w=40\) \(\mu s\), and \(\tau _{\mathrm{int}}\) denotes the inverse of pulse frequency, and in which u(t) denotes a unit step function as follows:

$$\begin{aligned} u(t) = \left\{ \begin{array}{ll} 1 &{}\quad (0 \le t) \\ 0 &{}\quad (\mathrm{otherwise}) \end{array} \right. . \end{aligned}$$
(A.4)

The extracellular resistivity \(\rho _{ext}\) was set at 300.0 \(\Omega \cdot \)cm. In order to solve (A.1) with numerical calculations, the discretized version of (A.1) is obtained as follows:

$$\begin{aligned}&C_m^{[k]}\frac{V_m^{[i,k]}(t+\varDelta t) - V_m^{[i,k]}(t)}{\varDelta t} + \frac{V_m^{[i,k]}(t)}{R_m^{[i,k]}} + I_{\mathrm{ion}}^{[i,k]}(t) + { I_{\mathrm{syn}}^{[i,k]}(t) } \nonumber \\&\quad = \left( \frac{V_m^{[i,k+1]}(t) - V_m^{[i,k]}(t)}{R_a^{[k+1,k]}} - \frac{V_m^{[i,k]}(t) - V_m^{[i,k-1]}(t)}{R_a^{[k,k-1]}} \right) \nonumber \\&\qquad + \left( \frac{V_e^{[i,k+1]}(t) - V_e^{[i,k]}(t)}{R_a^{[k+1,k]}} - \frac{V_e^{[i,k]}(t) - V_e^{[i,k-1]}(t)}{R_a^{[k,k-1]}} \right) \end{aligned}$$
(A.5)

where i, and k stand for the neuron number and the compartment number (\(i = 1,2,\dots ,N, k = 1,2,\dots ,26\)), \({V_m^{[i,k]}(t)}/{R_m^{[i,k]}} = 0\) at \(k=6\), \(I_{\mathrm{ion}}^{[i,k]}(t)=0\) at \(k\ne 6\), and \(I_{\mathrm{syn}}^{[i,k]}(t)\) denotes the synaptic stimuli coming from neurons other than ith neuron to the kth compartment determined randomly from 8th to 26th compartment in ith neuron (see Fig. 1b). To solve with Crank–Nicolson method, (A.5) is rearranged as follows:

$$\begin{aligned}&C_m^{[k]}\frac{V_m^{[i,k]}(t+\varDelta t) - V_m^{[i,k]}(t)}{\varDelta t}\nonumber \\&\quad =\frac{1}{2}\bigg \{ \frac{V_m^{[i,k+1]}(t)-V_m^{[i,k]}(t)}{R_a^{[k+1,k]}} -\frac{V_m^{[i,k]}(t)-V_m^{[i,k-1]}(t)}{R_a^{[k,k-1]}}\nonumber \\&\qquad +\frac{V_m^{[i,k]}(t)}{R_m^{[k]}} +\frac{V_m^{[i,k+1]}(t+\varDelta t)-V_m^{[i,k]}(t+\varDelta t)}{R_a^{[k+1,k]}}\nonumber \\&\qquad -\frac{V_m^{[i,k]}(t+\varDelta t)-V_m^{[i,k-1]}(t+\varDelta t)}{R_a^{[k,k-1]}} +\frac{V_m^{[i,k]}(t+\varDelta t)}{R_m^{[k]}} \bigg \}\nonumber \\&\qquad +\frac{V_e^{[i,k+1]}(t)-V_e^{[i,k]}(t)}{R_a^{[k+1,k]}} -\frac{V_e^{[i,k]}(t)-V_e^{[i,k-1]}(t)}{R_a^{[k,k-1]}}\nonumber \\&\qquad - I_{\mathrm{ion}}^{[i,k]}(t) { - I_{\mathrm{syn}}^{[i,k]}(t) }. \end{aligned}$$
(A.6)

1.2 Ion channel’s equation in soma

We assumed parallel equivalent circuit with seven conductances in the soma (Warman et al. 1994; Stacey and Durand 2000). Briefly, transmembrane current \(I^{[i,6]}_{\mathrm{ion}}(t)\) is described by

$$\begin{aligned} I^{[i,6]}_{\mathrm{ion}}(t)= & {} I^{[i]}_{\mathrm{Na}}(t) + I^{[i]}_{K_{\mathrm{DR}}}(t) + I^{[i]}_{K_{M}}(t) + I^{[i]}_{K_{A}}(t)\nonumber \\&+ I^{[i]}_{\mathrm{Ca}}(t) + I^{[i]}_{K_{\mathrm{CT}}}(t) + I^{[i]}_{K_{\mathrm{AHP}}}(t). \end{aligned}$$
(A.7)

One sodium, three active potassium, one calcium, and two calcium-dependent potassium channel currents are incorporated into soma. These current can be expressed as follows:

$$\begin{aligned} I^{[i]}_{\mathrm{Na}}(t)= & {} g_{\mathrm{Na}} m_{[i]}^3(t) h_{[i]}(t) (V_m^{[i,6]}(t)-E_{\mathrm{Na}})\nonumber \\ I^{[i]}_{K_{\mathrm{DR}}}(t)= & {} g_{K_{\mathrm{DR}}} n_{[i]}^4(t) (V_m^{[i,6]}(t)-E_{K_{\mathrm{DR}}})\nonumber \\ I^{[i]}_{K_M}(t)= & {} g_{K_M} u_{[i]}^2(t) (V_m^{[i,6]}(t)-E_{K_M})\nonumber \\ I^{[i]}_{K_A}(t)= & {} g_{K_A} a_{[i]}(t) b_{[i]}(t) (V_m^{[i,6]}(t)-E_{K_A})\nonumber \\ I^{[i]}_{\mathrm{Ca}}(t)= & {} g_{\mathrm{Ca}} s_{[i]}^2(t) r_{[i]}(t) (V_m^{[i,6]}(t)-E_{\mathrm{Ca}})\nonumber \\ I^{[i]}_{K_{\mathrm{AHP}}}(t)= & {} g_{K_{\mathrm{AHP}}} q_{[i]}(t) (V_m^{[i,6]}(t)-E_{K_{\mathrm{AHP}}})\nonumber \\ I^{[i]}_{K_{\mathrm{CT}}}(t)= & {} g_{K_{\mathrm{CT}}} c_{[i]}^2(t) d_{[i]}(t) (V_m^{[i,6]}(t)-E_{K_{\mathrm{CT}}}) \end{aligned}$$
(A.8)

where \(m_{[i]}(t)\), \(h_{[i]}(t)\) ,\(n_{[i]}(t)\), \(u_{[i]}(t)\), \(a_{[i]}(t)\), \(b_{[i]}(t)\), \(r_{[i]}(t)\), \(q_{[i]}(t)\), \(c_{[i]}(t)\) and \(d_{[i]}(t)\) are channel opening rates obtained by differential equations of each ion channel. These are determined by \(V_m^{[i,6]}(t)\), \(E_{\mathrm{rest}}\), \(g_x\) and \(E_x\), the membrane potential of soma, the resting potential of soma, conductance and reversal potential, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, R., Mino, H. & Durand, D.M. Pulse-frequency-dependent resonance in a population of pyramidal neuron models. Biol Cybern 116, 363–375 (2022). https://doi.org/10.1007/s00422-022-00925-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-022-00925-w

Keywords