Skip to main content
Log in

Stochastic synchronization in nonlinear network systems driven by intrinsic and coupling noise

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In this paper, we consider a noisy network of nonlinear systems in the sense that each system is driven by two sources of state-dependent noise: (1) an intrinsic noise that can be generated by the environment or any internal fluctuations and (2) a noisy coupling which is generated by interactions with other systems. Our goal is to understand the effect of noise and coupling on synchronization behaviors of such networks. First, we assume that all the systems are driven by a common noise and show how a common noise can be detrimental or beneficial for network synchronization behavior. Then, we assume that the systems are driven by independent noise and study network approximate synchronization behavior. We numerically illustrate our results using the example of coupled Van der Pol oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aminzare Z, Holmes P (2019) Heterogeneous inputs to central pattern generators can shape insect gaits. SIAM J Appl Dyn Syst 18(2):1037–1059

    Article  Google Scholar 

  • Aminzare Z, Srivastava V, Holmes P (2018) Gait transitions in a phase oscillator model of an insect central pattern generator. SIAM J Appl Dynaml Syst 17(1):626–671

    Article  Google Scholar 

  • Aminzare Z, Srivastava V (2021) Phase reduction and synchronization of coupled noisy oscillators, arXiv preprint arXiv:2103.04492

  • Aradi I, Soltesz I (2002) Modulation of network behaviour by changes in variance in interneuronal properties. J Physiol 538(1):227–251

    Article  CAS  Google Scholar 

  • DeLellis P, di Bernardo M, Russo G (2011) On quad, Lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans Circuits Syst I Regul Pap 58(3):576–583

    Article  Google Scholar 

  • Demir A, Mehrotra A, Roychowdhury J (2000) Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans Circuits Syst-I: Fundament Theory Appl 47(5):655

    Article  Google Scholar 

  • Dorfler F, Chertkov M, Bullo F (2013) Synchronization in complex oscillator networks and smart grids. Proc Natl Acad Sci 110(6):2005–2010

    Article  CAS  Google Scholar 

  • Dynkin EB (1965) Markov Processes. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Ermentrout G, Galán R, Urban N (2008) Reliability, synchrony and noise. Trends Neurosci 31:428–434

    Article  CAS  Google Scholar 

  • Fan G, Russo G, Bressloff PC (2019) Node–to–node and node–to–medium synchronization in quorum sensing networks affected by state–dependent noise. SIAM J on Appl Dyn Syst 18(4):1934–53

  • Ghigliazza RM, Holmes P (2004) Minimal models of bursting neurons: how multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J Appl Dyn Syst 3(4):636–670

    Article  Google Scholar 

  • Ghigliazza RM, Holmes P (2004) A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J Appl Dyn Syst 3(4):671–700

    Article  Google Scholar 

  • Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420(6912):238

    Article  CAS  Google Scholar 

  • Hajimiri A, Lee TH (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circuits 33(2):179–194

    Article  Google Scholar 

  • He W, Du W, Qian F, Cao J (2013) Synchronization analysis of heterogeneous dynamical networks. Neurocomputing 104:146–154

    Article  Google Scholar 

  • Hermann G, Touboul J (2012) Heterogeneous connections induce oscillations in large-scale networks. Phys Rev Lett 109:018702

    Article  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (2012) Weakly connected neural networks. Springer Science & Business Media, Berlin

    Google Scholar 

  • Ijspeert A (2008) Central pattern generators for locomotion control in animals and robots: A review. Neural Netw 21(4):642–653

    Article  Google Scholar 

  • Jafarian M, Mamduhi MH, Johansson KH (2021) Stochastic stability of discrete-time phase-coupled oscillators over uncertain and random networks, arXiv preprint arXiv:2104.05477

  • Khalil HK (2002) Nonlinear systems. Prentice Hall, third ed

  • Klein DJ (2008) Coordinated control and estimation for multi-agent systems: theory and practice. PhD thesis, University of Washington

  • Kuramoto Y (2003) Chemical oscillations, Waves, and Turbulence. Courier Corporation

  • Leonard NE, Shen T, Nabet B, Scardovi L, Couzin ID, Levin SA (2012) Decision versus compromise for animal groups in motion. Proc Natl Acad Sci 109(1):227–232

    Article  CAS  Google Scholar 

  • Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91(6):855–860

    Article  CAS  Google Scholar 

  • Ly C, Ermentrout GB (2010) Coupling regularizes individual units in noisy populations. Phys Rev E 81:011911

    Article  Google Scholar 

  • Mao X (2011) Stochastic Differential Equations and Applications. Woodhead Publishing, second ed

  • Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movements. Current Biol 11(23):R986–R996

    Article  CAS  Google Scholar 

  • McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–425

    Article  CAS  Google Scholar 

  • Menara T, Baggio G, Bassett DS, Pasqualetti F (2019) A framework to control functional connectivity in the human brain, In: 2019 IEEE 58th Conference on Decision and Control (CDC), pp. 4697–4704

  • Meng JH, Riecke H (2018) Synchronization by uncorrelated noise: interacting rhythms in interconnected oscillator networks. Sci Rep 8(1):1–14

    Google Scholar 

  • Michaels D, Matyas EP, Jalife J (1987) Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circ Res 61(5):704–714

    Article  CAS  Google Scholar 

  • Montenbruck JM, Bürger M, Allgöwer F (2015) Practical synchronization with diffusive couplings. Automatica 53:235–243

    Article  Google Scholar 

  • Paley DA, Leonard NE, Sepulchre R, Grunbaum D, Parrish JK (2007) Oscillator models and collective motion. IEEE Control Syst Mag 27(4):89–105

    Article  Google Scholar 

  • Pang JC, Gollo LL, Roberts JA (2021) Stochastic synchronization of dynamics on the human connectome. Neuroimage 229:117738

    Article  Google Scholar 

  • Pham Q-C, Tabareau N, Slotine J-J (2009) A contraction theory approach to stochastic incremental stability. IEEE Trans Autom Control 54(4):816–820

    Article  Google Scholar 

  • Rouche N, Habets P, Laloy M (1977) Stability theory by liapunov’s direct method. Springer, Berlin

    Book  Google Scholar 

  • Russo G, Shorten R (2018) On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes. Physica D 369:47–54

    Article  Google Scholar 

  • Russo G, Wirth F, Shorten R (2019) On synchronization in continuous-time networks of nonlinear nodes with state-dependent and degenerate noise diffusion. IEEE Trans Autom Control 64(1):389–395

    Article  Google Scholar 

  • Sompolinsky H, Crisanti A, Sommers HJ (1988) Chaos in random neural networks. Phys Rev Lett 61:259–262

    Article  CAS  Google Scholar 

  • Stanzhitskii AM (2001) Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions. Ukr Math J 53:323–327

    Article  Google Scholar 

  • Teramae J-N, Tanaka D (2004) Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys Rev Lett 93(20):204103

    Article  Google Scholar 

  • Teramae J, Kuramoto Y (2001) Strong desynchronizing effects of weak noise in globally coupled systems., Physical review. E, Statistical, nonlinear, and soft matter physics, vol. 63 3 Pt 2, p. 036210

  • Touboul JD, Piette C, Venance L, Ermentrout GB (2020) Noise-induced synchronization and antiresonance in interacting excitable systems: applications to deep brain stimulation in Parkinson’s disease. Phys Rev X 10(1):011073

    CAS  Google Scholar 

  • Von T (2014) Algebraic connectivity of Erdös-Rényi graphs near the connectivity threshold. Available at: https://www.mathstat.dal.ca/tkolokol/papers/critscaling4.pdf

  • Wiesenfeld K, Colet P, Strogatz SH (1998) Frequency locking in Josephson arrays: connection with the Kuramoto model. Phys Rev E 57(2):1563

    Article  CAS  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theoretical Biol 16(1):15–42

    Article  CAS  Google Scholar 

  • Winfree AT (2001) The geometry of biological time. Springer Science & Business Media, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Simon Foundations grant 712522, NSF grant IOS-2037828, and ARO grant W911NF-18-1-0325. The authors thank the editor and the anonymous reviewers for their valuable comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Aminzare.

Additional information

Communicated by Jonathan Touboul.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to “special issue Stochastic Oscillators”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminzare, Z., Srivastava, V. Stochastic synchronization in nonlinear network systems driven by intrinsic and coupling noise. Biol Cybern 116, 147–162 (2022). https://doi.org/10.1007/s00422-022-00928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-022-00928-7

Keywords

Navigation