Abstract
Cancers are complex dynamic ecosystems. Reductionist approaches to science are inadequate in characterizing their self-organized patterns and collective emergent behaviors. Since current approaches to single-cell analysis in cancer systems rely primarily on single time-point multiomics, many of the temporal features and causal adaptive behaviors in cancer dynamics are vastly ignored. As such, tools and concepts from the interdisciplinary paradigm of complex systems theory are introduced herein to decode the cellular cybernetics of cancer differentiation dynamics and behavioral patterns. An intuition for the attractors and complex networks underlying cancer processes such as cell fate decision-making, multiscale pattern formation systems, and epigenetic state-transitions is developed. The applications of complex systems physics in paving targeted therapies and causal pattern discovery in precision oncology are discussed. Pediatric high-grade gliomas are discussed as a model-system to demonstrate that cancers are complex adaptive systems, in which the emergence and selection of heterogeneous cellular states and phenotypic plasticity are driven by complex multiscale network dynamics. In specific, pediatric glioblastoma (GBM) is used as a proof-of-concept model to illustrate the applications of the complex systems framework in understanding GBM cell fate decisions and decoding their adaptive cellular dynamics. The scope of these tools in forecasting cancer cell fate dynamics in the emerging field of computational oncology and patient-centered systems medicine is highlighted.
Similar content being viewed by others
Data Availability and Codes
Raw Datasets Pediatric GBM gene expression count matrix (Neftel et al. 2019): https://singlecell.broadinstitute.org/single_cell/study/SCP393/single-cell-rna-seq-of-adult-and-pediatric-glioblastoma#study-summary The metadata can be used to isolate the n = 8 pediatric GBM patient samples. Pediatric Brain tumors proteome (Petralia et al. 2021): https://cptac-data-portal.georgetown.edu/study-summary/S047 Extract the abundance count matrix from the text file “Gygi_TCMP_HMS_Proteome.tmt11.txt” found in the downloaded folder. All codes and instructions for the PID networks inference and the guided tutorials to obtain the presented results/single-cell analyses are available in the project GitHub link: https://github.com/Abicumaran/Cancer-Cybernetics GitHub https://doi.org/10.5281/zenodo.6432909
References
Alban TJ, Bayik D, Otvos B, Rabljenovic A, Leng L, Jia-Shiun L, Roversi G, Lauko A, Momin AA, Mohammadi AM, Peereboom DM, Ahluwalia MS, Matsuda K, Yun K, Bucala R, Vogelbaum MA, Lathia JD (2020) Glioblastoma myeloid-derived suppressor cell subsets express differential macrophage migration inhibitory factor receptor profiles that can be targeted to reduce immune suppression. Front Immunol 11:1191. https://doi.org/10.3389/fimmu.2020.01191
Amemiya T, Shibata K, Itoh Y, Itoh K, Watanabe M, Yamaguchi T (2017) Primordial oscillations in life: direct observation of glycolytic oscillations in individual HeLa cervical cancer cells. Chaos 27:104602
Amson R, Pece S, Marine JC, Di Fiore PP, Telerman A (2013) TPT1/ TCTP-regulated pathways in phenotypic reprogramming. Trends Cell Biol 23(1):37–46
Aranda V, Nolan M, Muthuswamy S (2008) Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27:6878–6887
Archetti M, Pienta KJ (2019) Cooperation among cancer cells: applying game theory to cancer. Nat Rev Cancer 19:110–117
Armingol E, Officer A, Harismendy O et al (2021) Deciphering cell–cell interactions and communication from gene expression. Nat Rev Genet 22:71–88. https://doi.org/10.1038/s41576-020-00292-x
Ashby RW (1964) Introduction to cybernetics. Routledge Kegan & Paul, London
Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25:20. https://doi.org/10.1186/s12929-018-0426-4
Bach K, Pensa S, Zarocsinceva M et al (2021) Time-resolved single-cell analysis of Brca1 associated mammary tumourigenesis reveals aberrant differentiation of luminal progenitors. Nat Commun 12:1502. https://doi.org/10.1038/s41467-021-21783-3
Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Gen 5:101–113
Bar-Yam Y (2002) General features of complex systems, encyclopedia of life support systems. EOLSS UNESCO Publishers, Oxford, UK
Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23(10):1124–1134. https://doi.org/10.1038/nm.4409
Bertalanffy L (1969) General system theory: Foundations, Development, Applications. George Braziller, New York, USA
Biamonte J, Wittek P, Pancotti N et al (2017) Quantum machine learning. Nature 549:195–202. https://doi.org/10.1038/nature23474
Bohm, D (1980) Wholeness and the Implicate Order Routledge
Boija A, Klein IA, Young RA (2021) Biomolecular condensates and cancer. Cancer cell 39(2):174–192
Boileau M, Shirinian M, Gayden T, Harutyunyan AS, Chen C, Mikael LG, Duncan HM, Neumann AL, Arreba-Tutusaus P, De Jay N, Zeinieh M, Rossokhata K, Zhang Y, Nikbakht H, Mouawad C, Massoud R, Frey F, Nasr R, El Cheikh J, El Sabban M, Eppert K (2019) Mutant H3 histones drive human pre-leukemic hematopoietic stem cell expansion and promote leukemic aggressiveness. Nat Commun 10(1):2891. https://doi.org/10.1038/s41467-019-10705-z
Bossomaier TRJ, Green DJ (2000) Complex systems. Cambridge Univ, Press
Brabletz T, Kalluri R, Nieto M et al (2018) EMT in cancer. Nat Rev Cancer 18:128–134. https://doi.org/10.1038/nrc.2017.118
Brunton S, Kutz J (2019) Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press, Cambridge
Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110
Capra F, Luisi PL (2014) The systems view of life: a unifying vision. Cambridge University Press, UK
Caragher SP, Hall RR, Ahsan R, Ahmed AU (2018) Monoamines in glioblastoma: complex biology with therapeutic potential. Neuro Oncol 20(8):1014–1025. https://doi.org/10.1093/neuonc/nox210
Chaligne R, Gaiti F, Silverbush D et al (2021) Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. Nat Genet 53:1469–1479. https://doi.org/10.1038/s41588-021-00927-7
Chan TE et al (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251-267e3. https://doi.org/10.1016/j.cels.2017.08.014
Chen CC, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF, Jabado N (2020) Histone H3. 3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183(6):1617–1633
Chung C, Sweha SR, Pratt D, Tamrazi B, Panwalkar P, Banda A, Venneti S (2020) Integrated metabolic and epigenomic reprograming by H3K27M mutations in diffuse intrinsic pontine gliomas. Cancer Cell. https://doi.org/10.1016/j.ccell.2020.07.008
Coffey DS (1998) Self-organization, complexity and chaos: the new biology for medicine. Nature Med 4:882–885
Coste C, Neirinckx V, Gothot A, Wislet S, Rogister B (2015) Are neural crest stem cells the missing link between hematopoietic and neurogenic niches? Front Cell Neurosci 9:218. https://doi.org/10.3389/fncel.2015.00218
Couturier CP, Ayyadhury S, Le PU, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M, Lee C, Wang Y, Wee Yong V, Guiot MC, Najafabadi H, Misic B, Antel J, Bourque G, Ragoussis J, Petrecca K (2020) Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat Commun 11(1):3406. https://doi.org/10.1038/s41467-020-17186-5
da Rocha EL, Rowe RG, Lundin V, Malleshaiah M, Jha DK, Rambo CR, Li H, North TE, Collins JJ, Daley GQ (2018) Reconstruction of complex single-cell trajectories using cell router. Nat Commun 9(1):892. https://doi.org/10.1038/s41467-018-03214-y
Das P, Upadhyay RK, Das P, Ghosh D (2020) Exploring dynamical complexity in a time delayed tumor immune model Chaos: an Interdisciplinary. J Nonlinear Sci. 30(12):123118
Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. https://doi.org/10.1016/j.cell.2012.06.013
Denholtz M, Bonora G, Chronis C, Splinter E et al (2013) Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell 13(5):602–616. https://doi.org/10.1016/j.stem.2013.08.013
Denk J et al (2018) MinE conformational switching confers robustness on self-organized Min protein patterns. PNAS 115(18):4553–4558
Deshmukh S, Ptack A, Krug B, Jabado N (2021) Oncohistones: a roadmap to stalled development. FEBS J. https://doi.org/10.1111/febs.15963
Desjardins A, Gromeier M, Herndon JE 2nd, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, Peters KB, Randazzo D, Sampson JH, Vlahovic G, Harrison WT, McLendon RE, Ashley D, Bigner DD (2018) Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 379(2):150–161. https://doi.org/10.1056/NEJMoa1716435
Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M, Minamoto T (2016) Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci 107(10):1363–1372. https://doi.org/10.1111/cas.13028
Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev 74(1):1–47. https://doi.org/10.1152/physrev.1994.74.1.1
Erdel F (2017) How communication between nucleosomes enables spreading and epigenetic memory of histone modifications. BioEssays News and Rev In Mol, Cell Dev Biol 39(12):1700053
Falkovich G, Sreenivasan KR (2006) Lessons from hydrodynamic turbulence. Phys Today 59(4):43–49
Fang X, Kruse K, Lu T, Wang J (2019) Nonequilibrium physics in biology. Rev Mod Phys 91(4):045004
Feinberg A, Koldobskiy M, Göndör A (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet 17:284–299. https://doi.org/10.1038/nrg.2016.13
Flavahan WA, Gaskell E, Bernstein BE (2017) Epigenetic plasticity and the hallmarks of cancer. Science 357(6348):eaal2380
Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. Apmis 112(7–8):508–525
Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15(9):2038–2049. https://doi.org/10.1016/j.celrep.2016.04.085
Gao L, Huang S, Zhang H, Hua W, Xin S, Cheng L, Guan W, Yu Y, Mao Y, Pei G (2019) Suppression of glioblastoma by a drug cocktail reprogramming tumor cells into neuronal like cells. Sci Rep 9(1):3462. https://doi.org/10.1038/s41598-019-39852-5
Gatenby RA, Gawlinski ET (1996) A reaction-diffusion model of cancer invasion. Cancer Res 56(24):5745–5753
Gauthier DJ, Bollt E, Griffith A et al (2021) Next generation reservoir computing. Nat Commun 12:5564. https://doi.org/10.1038/s41467-021-25801-2
Gell-Mann M (1995) What is complexity? Remarks on simplicity and complexity by the nobel prize-winning author of the quark and the jaguar. Complexity 1(1):16–19
Geva-Zatorsky N et al (2006) Oscillations and variability in the p53 system. Mol Syst Biol 2(2006):0033
Ghosh S, Opala A, Matuszewski M et al (2019) Quantum reservoir processing. npj Quantum Inf 5:35. https://doi.org/10.1038/s41534-019-0149-8
Gleick J (2008) Chaos: making a new science, 2nd edn. Penguin Books, New York
Glock P, Brauns F, Halatek J, Frey E, Schwille P (2019) Design of biochemical pattern forming systems from minimal motifs. Elife 8:e48646
Gluzman M, Scott JG, Vladimirsky A (2020) Optimizing adaptive cancer therapy: dynamic programming and evolutionary game theory. Proc Royal Soc b: Biol Sci 287(1925):20192454
Goldberger AL, Rigney DR, West BJ (1990) Chaos and fractals in human physiology. Sci Am 262(2):42–49
Goodwin B (1965a) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–428
Goodwin B (1966) An entrainment model for timed enzyme synthesis in bacteria. Nature 209:479–481
Gottwald GA, Melbourne I (2016) The test for chaos: a review. In: Skokos C, Gottwald G, Laskar J (eds) Chaos detection and predictability lecture notes in physics, vol 915. Springer, Berlin
Gros C (2011) Complex and adaptive dynamical systems: a primer, 2nd edn. Springer, Heidelberg
Gryder BE, Nelson CW, Shepard SS (2013) Biosemiotic entropy of the genome: mutations and epigenetic imbalances resulting in cancer. Entropy 15(1):234–261. https://doi.org/10.3390/e15010234
Guo J, Zheng J (2017) Hopland: single cell pseudotime recovery using continuous hopfield network-based modelling of waddington’s epigenetic landscape. Bioinformatics 33(14):i102-109
Halatek J, Frey E (2018) Rethinking pattern formation in reaction–diffusion systems. Nat Phys 14:507–514
Hanahan D (2022) Hallmarks of Cancer: New Dimensions. Cancer Discov 12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674
Harutyunyan AS, Chen H, Lu T, Horth C, Nikbakht H, Krug B, Russo C, Bareke E, Marchione DM, Coradin M, Garcia BA, Jabado N, Majewski J (2020) H3K27M in gliomas causes a one-step decrease in H3K27 methylation and reduced spreading within the constraints of H3K36 methylation. Cell Rep 33(7):108390. https://doi.org/10.1016/j.celrep.2020.108390
Hasani, R. et al., Liquid Time-constant Networks. arXiv:2006.04439 [cs.LG] (2020)
Heltberg M, Kellogg RA, Krishna S, Tay S, Jensen MH (2016) Noise Induces Hopping between NF-κB Entrainment Modes. Cell Syst 3(6):532-539.e3
Heltberg ML, Krishna S, Jensen MH (2019) On chaotic dynamics in transcription factors and the associated effects in differential gene regulation”. Nat Commun 10:71
Hodges C, Crabtree GR (2012) Dynamics of inherently bounded histone modification domains. Proc Natl Acad Sci USA 109(33):13296–13301. https://doi.org/10.1073/pnas.1211172109
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558
Hu X, Hu Y, Wu F, Leung RWT, Qin J (2020) Integration of single-cell multi-omics for gene regulatory network inference. Comp. Struct. Biotechnol. J 18:1925–1938
Hu X, Hu Y, Wu F, Leung RWT, Qin J (2020) Integration of single-cell multi-omics for gene regulatory network inference. CA: a Cancer J Clin. 18:1925–1938
Huang S, Ernberg I, Kauffman S (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semi. Cell Dev Biol. 20(7):869–876
Huang S (2006) Multistability and multicellularity: cell fates as high dimensional attractors of gene regulatory networks. In: computational systems biology, Academic Press
Iacono G, Massoni-Badosa R, Heyn H (2019) Single-cell transcriptomics unveils gene regulatory network plasticity. Genome Biol 20:110. https://doi.org/10.1186/s13059-019-1713-4
Itik M, Banks SP (2010) Chaos in a three-dimensional cancer model. Int J Bifurc. Chaos 20(1):71–79
Janson N (2012) Non-linear dynamics of Biological systems. Contemp Phys 53:137–168
Jensen MH, Krishna S (2012) Inducing phase-locking and chaos in cellular oscillators by modulating the driving stimuli. FEBS Lett 586(11):1664–1668
Jensen PB, Pedersen L, Krishna S, Jensen MH (2010) A Wnt oscillator model for somitogenesis. Biophys J 98(6):943–950
Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. https://doi.org/10.1126/science.1063127
Jessa S, Blanchet-Cohen A, Krug B, Vladoiu M, Coutelier M, Faury D, Poreau B, De Jay N, Hébert S, Monlong J, Farmer WT, Donovan LK, Hu Y, McConechy MK, Cavalli F, Mikael LG, Ellezam B, Richer M, Allaire A, Weil AG, Kleinman CL (2019) Stalled developmental programs at the root of pediatric brain tumors. Nat Genet 51(12):1702–1713. https://doi.org/10.1038/s41588-019-0531-7
Jin S, MacLean AL, Peng T, Nie Q (2018) scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data. Bioinformatics 34(12):2077–2086. https://doi.org/10.1093/bioinformatics/bty058
Jones C, Karajannis MA, Jones D, Kieran MW, Monje M, Baker SJ et al (2017) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19(2):153–161
Jost D (2014) Bifurcation in epigenetics: implications in development, proliferation, and diseases. Phys Rev E 89(1):010701
Jost D, Vaillant C (2018) Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Res 46(5):2252–2264. https://doi.org/10.1093/nar/gky009
Jung E, Alfonso J, Osswald M, Monyer H, Wick W, Winkler F (2019) Emerging intersections between neuroscience and glioma biology. Nat Neurosci 22(12):1951–1960. https://doi.org/10.1038/s41593-019-0540-y
Kaneko K (2011) Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cell-cell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge. BioEssays : News and Rev Mol, Cell Dev Biol 33(6):403–413. https://doi.org/10.1002/bies.201000153
Kauffman S (1993) The Origins of Order Oxford University Press
Khain E, Sander LM (2006) Dynamics and pattern formation in invasive tumor growth. Phys Rev Lett 96:188103
Khajanchi S, Perc M, Ghosh D (2018) The influence of time delay in a chaotic cancer model. Chaos 28(10):103101
Khlebodarova TM, Kogai VV, Fadeev SI, Likhoshvai VA (2017) Chaos and hyperchaos in simple gene network with negative feedback and time delays. J Bioinform Comput Biol 15(2):1650042
Khosravi H, Akabane AL, Alloo A, Nazarian RM, Boland GM (2016) Metastatic melanoma with spontaneous complete regression of a thick primary lesion. JAAD Case Reports 2(6):439–441. https://doi.org/10.1016/j.jdcr.2016.09.011
Kim M et al (2001) Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt (110). Science 292(5520):1357–1360
Kinnaird A, Zhao S, Wellen K et al (2016) Metabolic control of epigenetics in cancer. Nat Rev Cancer 16:694–707. https://doi.org/10.1038/nrc.2016.82
Knudson AG (1971) Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci 68:820–823
Knudson AG (2002) Cancer genetics. Am J Med Genet 111(1):96–102. https://doi.org/10.1002/ajmg.10320
Kong L-W, Fan H-W, Grebogi C, Lai Y-C (2021) Machine learning prediction of critical transition and system collapse. Phys Rev Res. https://doi.org/10.1103/physrevresearch.3.013090
Kraft K, Yost KE, Murphy S, Magg A, Long Y, Corces MR, Chang HY (2020) Polycomb-mediated genome architecture enables long-range spreading of H3K27 methylation. BioRXiv. https://doi.org/10.1101/2020.07.27.223438
Krenning L, Sonneveld S, Tanenbaum ME (2021) Time-resolved single-cell sequencing identifies multiple waves of mRNA decay during mitotic exit. BioRxiv. https://doi.org/10.1101/2021.04.17.440266
Krieger MS et al (2020) A blueprint for identifying phenotypes and drug targets in complex disorders with empirical dynamics. Patterns 1:100138
Kunert-Graf J, Sakhanenko N, Galas D (2020) Partial information decomposition and the information delta: a geometric unification disentangling non-pairwise information. Entropy 22(12):1333. https://doi.org/10.3390/e22121333
Ladyman J, Wiesner K (2020) What is a complex system? Yale University Press, New Haven
Lam KB, Valkanas K, Djuric U, Diamandis P (2020) Unifying models of glioblastoma’s intratumoral heterogeneity. Neuro-Oncol Adv 2(1):vdaa096
Lang AH, Li H, Collins JJ, Mehta P (2014) Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol 10(8):e1003734
Lavarone E, Barbieri CM, Pasini D (2019) Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun 10:1679. https://doi.org/10.1038/s41467-019-09624-w
Lee EY, Muller WJ (2010) Oncogenes and tumor suppressor genes. Cold Spring Harbor Perspect. Biol 2(10):a003236
Lee C, Robinson M, Willerth SM (2018) Direct reprogramming of glioblastoma cells into neurons using small molecules. ACS Chem Neurosci 9(12):3175–3185. https://doi.org/10.1021/acschemneuro.8b00365
Lee J, Hyeon DY, Hwang D (2020) Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 52:1428–1442. https://doi.org/10.1038/s12276-020-0420-2
Lehnertz B, Zhang YW, Boivin I, Mayotte N, Tomellini E, Chagraoui J, Lavallée VP, Hébert J, Sauvageau G (2017) H3K27M/I mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood 130(20):2204–2214. https://doi.org/10.1182/blood-2017-03-774653
Letellier C et al (2013) What can be learned from a chaotic cancer model? J Theor Biol 322:7–16
Li I, Nabet BY (2019) Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer 18(1):32. https://doi.org/10.1186/s12943-019-0975-5
Li W, Wang J (2017) Uncovering the underlying mechanism of cancer tumorigenesis and development under an immune microenvironment from global quantification of the landscape. J R Soc Interface 14:20170105
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369
Lim SH, Theo Giorgini L, Moon W, Wettlaufer JS (2020) Predicting critical transitions in multiscale dynamical systems using reservoir computing. Chaos: an Interdiscip J Nonlinear Sci 30(12):123126
Lövkvist C, Howard M (2021) Using computational modelling to reveal mechanisms of epigenetic Polycomb control. Biochem Soc Trans 49(1):71–77
Lu Y, Wu T, Gutman O et al (2020) Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22:453–464. https://doi.org/10.1038/s41556-020-0485-0
Lulla RR, Saratsis AM, Hashizume R (2016) Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv 2(3):e1501354
Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14:2531–2560. https://doi.org/10.1162/089976602760407955
Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Jones C (2017) integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520-537.e5. https://doi.org/10.1016/j.ccell.2017.08.017
Majzner RG, Ramakrishna S, Yeom KW et al (2022) GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. https://doi.org/10.1038/s41586-022-04489-4
Markus M, Hess B (1984) Transition between oscillatory modes in a glycolytic model system. Proc Natn Acad Sci usa 81:4394–4398
Markus M, Kuschmitz D, Hess B (1985) Properties of strange attractors in yeast glycolysis. Biophys Chem 22(1–2):95–105
Martínez-Prat B, Ignés-Mullol J, Casademunt J et al (2019) Selection mechanism at the onset of active turbulence. Nat Phys 15:362–366. https://doi.org/10.1038/s41567-018-0411-6
Mecke KR (1996) Morphological characterization of patterns in reaction-diffusion systems. Phys Rev E 53:4794
Mill CP, Fiskus W, DiNardo CD, Qian Y, Raina K, Rajapakshe K, Perera D, Coarfa C, Kadia TM, Khoury JD, Saenz DT, Saenz DN, Illendula A, Takahashi K, Kornblau SM, Green MR, Futreal AP, Bushweller JH, Crews CM, Bhalla KN (2019) RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 134(1):59–73. https://doi.org/10.1182/blood.2018893982
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Jerónimo C (2018) Metabolism and epigenetic interplay in cancer: regulation and putative therapeutic targets. Front Genet 9:427. https://doi.org/10.3389/fgene.2018.00427
Mirny LA (2011) The fractal globule as a model of chromatin architecture in the cell. Chromosome Res 19:37–51
Misteli T (2020) The self-organizing genome: principles of genome architecture and function. Cell 183(1):28–45. https://doi.org/10.1016/j.cell.2020.09.014
Mitchell M (2011) Complexity: a guided tour. Oxford University Press, New York
Miyashita K, Kawakami K, Nakada M, Mai W, Shakoori A, Fujisawa H, Hayashi Y, Hamada J, Minamoto T (2009) Potential therapeutic effect of glycogen synthase kinase 3beta inhibition against human glioblastoma. Clin Cancer Res: an Off J Am Assoc. Cancer Res. 15(3):887–897. https://doi.org/10.1158/1078-0432.CCR-08-0760
Moreno-Smith M, Lutgendorf SK, Sood AK (2010) Impact of stress on cancer metastasis. Future Oncol 6(12):1863–1881. https://doi.org/10.2217/fon.10.142
Nagaraja S, Quezada MA, Gillespie SM, Arzt M, Lennon JJ, Woo PJ, Hovestadt V, Kambhampati M, Filbin MG, Suva ML, Nazarian J, Monje M (2019) Histone variant and cell context determine H3K27M reprogramming of the enhancer landscape and oncogenic state. Mol Cell 76(6):965-980.e12. https://doi.org/10.1016/j.molcel.2019.08.030
Natsume A, Ito M, Katsushima K, Ohka F, Hatanaka A, Shinjo K, Sato S, Takahashi S, Ishikawa Y, Takeuchi I, Shimogawa H, Uesugi M, Okano H, Kim SU, Wakabayashi T, Issa JP, Sekido Y, Kondo Y (2013) Chromatin regulator PRC2 is a key regulator of epigenetic plasticity in glioblastoma. Can Res 73(14):4559–4570. https://doi.org/10.1158/0008-5472.CAN-13-0109
Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, Richman AR, Silverbush D, Shaw ML, Hebert CM et al (2019) An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178(4):835-849.e21. https://doi.org/10.1016/j.cell.2019.06.024
Neumüller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23(23):2675–2699
Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256
Noberini R, Robusti G, Bonaldi T (2021) Mass spectrometry-based characterization of histones in clinical samples: applications, progresses, and challenges. FEBS J. https://doi.org/10.1111/febs.15707
Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci 115(29):E6697–E6706. https://doi.org/10.1073/pnas.1717730115
Oh J, Kim Y, Che L, Kim JB, Chang GE, Cheong E, Ha Y (2017) Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma. PLoS One 12(11):e0178881
Palit S, Heuser C, de Almeida GP, Theis FJ, Zielinski CE (2019) Meeting the challenges of high-dimensional single-cell data analysis in immunology. Front Immunol 10:1515. https://doi.org/10.3389/fimmu.2019.01515
Park SY, Nam JS (2020) The force awakens: metastatic dormant cancer cells. Exp Mol Med 52:569–581. https://doi.org/10.1038/s12276-020-0423-z
Pathak J, Lu Z, Hunt BR, Girvan M, Ott E (2017) Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data. Chaos 27(12):121102
Pathak J, Hunt B, Girvan M, Lu Z, Ott E (2018) Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett 120(2):024102
Paugh BS, Qu C, Jones C, Liu Z, Adamowicz-Brice M, Zhang J et al (2010) Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol 28(18):3061–3068
Pearl J (2009) Causality (Second Ed., New York: Cambridge University Press
Peles E, Nativ M, Lustig M, Grumet M, Schilling J, Martinez R, Plowman GD, Schlessinger J (1997) Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16:978–988
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Bocik WE et al (2020) Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183(7):1962–1985
Pikovsky A, Rosenblum M, Kurths J (2001) A universal concept in nonlinear sciences. Self 2:3
Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238
Prigogine I (1980) From Being to Becoming: Time and Complexity in the Physical Sciences. W.H. Freeman and Co., New York
Qiu Q, Hu P, Qiu X, Govek KW, Cámara PG, Wu H (2020) Massively parallel and time-resolved RNA sequencing in single cells with scNT-seq. Nat Meth 17(10):991–1001. https://doi.org/10.1038/s41592-020-0935-4
Quail T, Golfier S, Elsner M et al (2021) Force generation by protein–DNA co-condensation. Nat Phys 17:1007–1012. https://doi.org/10.1038/s41567-021-01285-1
Ramis-Conde I et al (2008) Mathematical modelling of cancer cell invasion of tissue. Math Comp Modelling 47(5–6):533–545
Rauschert S, Raubenheimer K, Melton PE et al (2020) Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenet 12:51. https://doi.org/10.1186/s13148-020-00842-4
Restrepo JG, Karma A (2009) Spatiotemporal intracellular calcium dynamics during cardiac alternans. Chaos 19(3):037115
Rice S, Jackson T, Crump NT et al (2021) A human fetal liver-derived infant MLL-AF4 acute lymphoblastic leukemia model reveals a distinct fetal gene expression program. Nat Commun 12:6905. https://doi.org/10.1038/s41467-021-27270-z
Rockne RC, Branciamore S, Qi J, Frankhouser DE, O’Meally D, Hua WK, Marcucci G (2020) State-transition analysis of time-sequential gene expression identifies critical points that predict development of acute myeloid leukemia. Cancer Res 80(15):3157–3169
Rodríguez-Antona C, Taron M (2015) Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med 277(2):201–217. https://doi.org/10.1111/joim.12321
Rössler OE (1976) Chemical turbulence: chaos in a simple reaction-diffusion system. Zeitschrift für Naturforschung A 31(10):1168–1172
Rössler O.E. (1977) Chemical Turbulence: A Synopsis. In: Haken H. [eds] Synergetics. Springer Series in Synergetics, vol 2. Springer, Berlin, Heidelberg
Ruelle D (1995) Turbulence, strange attractors and chaos world scientific series on nonlinear science series A, 16, Singapore
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Young RA (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361(6400):3958. https://doi.org/10.1126/science.aar3958
Safa AR, Saadatzadeh MR, Cohen-Gadol AA, Pollok KE, Bijangi-Vishehsaraei K (2015) Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes Dis. 2(2):152–163. https://doi.org/10.1016/j.gendis.2015.02.001
Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34(6):964–970
Schreck KC, Allen AN, Wang J, Pratilas CA (2020) Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neuro-oncol Adv. https://doi.org/10.1093/noajnl/vdaa138
Schwab ED, Pienta KJ (1996) Cancer as a complex adaptive system. Med Hypotheses 47(3):235–241
Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231
Seo H, Kim W, Lee J, Youn B (2013) Network-based approaches for anticancer therapy. Int J Oncol 43(6):1737–1744
Shi H, Yan KK, Ding L, Qian C, Chi H, Yu J (2020) Network approaches for dissecting the immune system. Iscience 23(8):101354
Simon M, Hosen I, Gousias K, Rachakonda S, Heidenreich B, Gessi M, Schramm J, Hemminki K, Waha A, Kumar R (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17(1):45–52
Singh R, Lanchantin J, Robins G, Qi Y (2016) DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17):i639–i648. https://doi.org/10.1093/bioinformatics/btw427
Solé RV (2003) Phase Transitions in Unstable Cancer Cell Populations 35(1):117–123. https://doi.org/10.1140/epjb/e2003-00262-8
Solé RV, Rodríguez-Caso C, Deisboeck TS, Saldaña J (2008) Cancer stem cells as the engine of unstable tumor progression. J Theor Biol 253(4):629–637
Sonnen KF et al (2018) Modulation of phase shift between wnt and notch signaling oscillations controls mesoderm segmentation. Cell 172(5):1079-1090.e12
Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14(9):611–622. https://doi.org/10.1038/nrc3793
Soshnev AA, Josefowicz SZ, Allis CD (2016) Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell 62(5):681–694. https://doi.org/10.1016/j.molcel.2016.05.004
Stanková K, Brown JS, Dalton WS, Gatenby RA (2019) Optimizing cancer treatment using game theory: a review. JAMA Oncol 5(1):96–103
Steinbichler TB, Dudás J, Skvortsov S et al (2019) Therapy resistance mediated by exosomes. Mol Cancer 18:58. https://doi.org/10.1186/s12943-019-0970-x
Strogatz S (2003) Sync: the emerging science of spontaneous order. Hyperion Press, NY
Strogatz SH (2015) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview Press, Boulder
Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20(5):257–272. https://doi.org/10.1038/s41576-019-0093-7
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177(7):1888–1902
Su Z, Zang T, Liu ML et al (2014) Reprogramming the fate of human glioma cells to impede brain tumor development. Cell Death Dis 5:e1463. https://doi.org/10.1038/cddis.2014.425
Sugihara G et al (2012) Detecting causality in complex ecosystems. Science 338(6106):496–500
Sun Z, Zhang Y, Jia J et al (2020) H3K36me3, message from chromatin to DNA damage repair. Cell Biosci 10:9. https://doi.org/10.1186/s13578-020-0374-z
Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Bernstein BE (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157(3):580–594
Takens, F. [1981] Detecting strange attractors in turbulence. Lecture Notes in mathematics [Springer-Verlag], 898:366–381
Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449. https://doi.org/10.1038/nm.3336
Taniguchi K, Karin M (2018) NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 18:309–324
Tian B, Nowak DE, Brasier AR (2005) A TNF-induced gene expression program under oscillatory NF-κB control. BMC Genomics 6:137
Tian T, Wan J, Song Q et al (2019) Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat Mach Intell 1:191–198
Tiana G, Jensen MH (2013) The dynamics of genetic control in the cell: the good and bad of being late. Phil Trans Royal Soc A: Math, Phys Eng Sci 371(1999):20120469
Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81
Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond b: Biol Sci 237(641):37–72
Uthamacumaran A, Craig M (2022) Algorithmic reconstruction of glioblastoma network complexity. Iscience 25(5):104179. https://doi.org/10.1016/j.isci.2022.104179
Van den Berge K, Roux de Bézieux H, Street K, Saelens W, Cannoodt R, Saeys Y, Clement L (2020) Trajectory-based differential expression analysis for single-cell sequencing data. Nature Commun 11(1):1–13
van der Pompe G, Antoni MH, Heijnen CJ (1996) Elevated basal cortisol levels and attenuated ACTH and cortisol responses to a behavioral challenge in women with metastatic breast cancer. Psychoneuroendocrinology 21(4):361–374. https://doi.org/10.1016/0306-4530(96)00009-1
Van’t Veer LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187):564–570
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suvà ML, Malenka RC, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539–545. https://doi.org/10.1038/s41586-019-1563-y
Verstraeten D et al (2007) An experimental unification of reservoir computing methods. Neural Netw 20:391–403
Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Nat Rev Genet 144(6):986–998
Waddington C (1942) Canalization of development, and the inheritance of acquired characters. Nature 150:563–565
Waddington CH (1957) The strategy of the Genes; a discussion of some aspects of theoretical biology, Allen and Unwin, London
Wang J (2015) Landscape and flux theory of non-equilibrium dynamical systems with application to biology. Adv Phys 64:1–137
Wang Z, Yuan H, Sun C, Xu L, Chen Y, Zhu Q, Zhao H, Huang Q, Dong J, Lan Q (2015) GATA2 promotes glioma progression through EGFR/ERK/Elk-1 pathway. Medical Oncol 32(4):87. https://doi.org/10.1007/s12032-015-0522-1
Wang L, Nie R, Yu Z et al (2020) An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data. Nat Mach Intell 2:693–703
Wang J, Ma A, Chang Y et al (2021a) scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Nat Commun 12:1882
Wang X et al (2021b) Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. https://doi.org/10.20892/j.issn.2095-3941.2020.0499
Wettmann L, Kruse K (2018) The Min-protein oscillations in Escherichia coli: an example of self-organized cellular protein waves. Phil Trans Royal Soc b: Biol Sci 373(1747):20170111
Wiener N (1961) Cybernetics: Or control and communication in the animal and the machine 2nd version. MIT Press
Williams J, Xu B, Putnam D et al (2021) MethylationToActivity: a deep-learning framework that reveals promoter activity landscapes from DNA methylomes in individual tumors. Genome Biol 22:24. https://doi.org/10.1186/s13059-020-02220-y
Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16:15–42
Wirsching HG, Weller M (2020) Does neuronal activity promote glioma progression? Trends in Cancer 6(1):1–3. https://doi.org/10.1016/j.trecan.2019.11.002
Wolfram, S (eds) (1988) Complex systems theory. In: emerging syntheses in science: proceedings of the founding workshops of the santa fe institute. Addison-Wesley. p. 183–9
Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2(9):823–830
Xiong S, Feng Y, Cheng L (2019) Cellular reprogramming as a therapeutic target in cancer. Trends Cell Biol 29(8):623–634. https://doi.org/10.1016/j.tcb.2019.05.001
Yabo YA, Niclou SP, Golebiewska A (2022) Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro-oncology 24(5):669–682
Yang M, Brackenbury WJ (2013) Membrane potential and cancer progression. Front Physiol 4:185. https://doi.org/10.3389/fphys.2013.00185
Yang E, Wang X, Gong Z et al (2020) Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Sig Transduct Target Ther 5:242. https://doi.org/10.1038/s41392-020-00359-5
Yanovich-Arad G, Ofek P, Yeini E, Mardamshina M, Danilevsky A, Shomron N, Grossman R, Satchi-Fainaro R, Geiger T (2021) Proteogenomics of glioblastoma associates molecular patterns with survival. Cell Rep 34(9):108787. https://doi.org/10.1016/j.celrep.2021.108787
Yu H, Zhu S, Zhou B, Xue H, Han JD (2008) Inferring causal relationships among different histone modifications and gene expression. Genome Res 18(8):1314–1324. https://doi.org/10.1101/gr.073080.107
Yuen BT, Knoepfler PS (2013) Histone H3 3 mutations: a variant path to cancer. Cancer cell 24(5):567–574
Zahir N, Sun R, Gallahan D et al (2020) Characterizing the ecological and evolutionary dynamics of cancer. Nat Genet 52:759–767
Zenil H, Kiani NA, Tegnér J (2016) Methods of information theory and algorithmic complexity for network biology. Semin Cell Dev Biol 51:32–43
Zenil H, Kiani NA, Marabita F, Deng Y, Elias S, Schmidt A, Tegner J (2019) An algorhmic information calculus for causal discovery and reprogramming systems. Iscience 19:1160–1172
Zenil H, Kiani NA, Abrahao FS, Tegnér J (2020) Algorithmic Information Dynamics Scholarpedia 15(7):53143
Zhang Y, Kutateladze TG (2019) Liquid–liquid phase separation is an intrinsic physicochemical property of chromatin. Nat Struct Mol Biol 26:1085–1086. https://doi.org/10.1038/s41594-019-0333-8
Zhou S, Abdouh M, Arena V, Arena M, Arena GO (2017) Reprogramming malignant cancer cells toward a benign phenotype following exposure to human embryonic stem cell microenvironment. PLoS ONE 12(1):e0169899. https://doi.org/10.1371/journal.pone.0169899
Zhou P, Wang S, Li T et al (2021) Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics. Nat Commun 12:5609. https://doi.org/10.1038/s41467-021-25548-w
Acknowledgements
Thanks to Dr. Mohan Malleshaiah (IRCM, Montreal) for introducing me to biological cybernetics and single-cell analyses. Figure S2 in the Appendix was reproduced from our results published in Uthamacumaran and Craig (2022) with the permission of both authors and the open-access journal it is published in iScience. Thanks to Dalia Alkayal for illustrating Figure 1 and to Rik Bhattacharja for designing Figure 5. Figure 1 was adapted from an image found in Deshmukh et al. (2021). All other figures were generated by the corresponding author (AU), the codes and datasets for which are provided in the GitHub link below.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares there are no competing interests.
Additional information
Communicated by Benjamin Lindner.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Uthamacumaran, A. Dissecting cell fate dynamics in pediatric glioblastoma through the lens of complex systems and cellular cybernetics. Biol Cybern 116, 407–445 (2022). https://doi.org/10.1007/s00422-022-00935-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00422-022-00935-8