Skip to main content
Log in

Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract.

 A biophysically realistical model of the primary visual pathway is designed, including feedback connections from the visual cortex to the lateral geniculate nucleus (LGN) – the so-called corticofugal pathway. The model comprises up to 10 000 retina and LGN cells divided into the ON and the OFF pathway according to their contrast response characteristics. An additional 6000 cortical simple cells are modeled. Apart from the direct excitatory afferent pathway we include strong mutual inhibition between the ON and the OFF subsystems. In addition, we propose a novel type of paradoxical corticofugal connection pattern which links ON dominated cortical simple cells to OFF-center LGN cells and vice versa. In accordance with physiological findings these connections are weakly excitatory and do not interfere with the steady-state responses to constant illumination, because during the steady-state inhibition arising from the active pathway effectively silences the nonstimulated pathway. At the moment of a contrast reversal the effect of the paradoxical connection pattern comes into play and the depolarization of the previously silent channel is accelerated, leading to a latency reduction of up to 4 ms using moderate synaptic weights. With increased weights reductions of more than 10 ms can be achieved. We introduce different synaptic characteristics for the feedback (AMPA, NMDA, AMPA+NMDA) and show that the strongest latency reduction is obtained for a combination of the membrane channels (i.e., AMPA+NMDA). The effect of the proposed paradoxical connection pattern is self-regulating; because the levels of inhibition and paradoxical excitation are always driven by the same inputs (strong inhibition is counterbalanced by a stronger paradoxical excitation and vice versa). In addition, the latency reduction for a contrast inversion which ends at a small absolute contrast level (small contrast step) is stronger than the reduction for an inversion with large final contrast (large contrast step). This leads to a more pronounced reduction in the reaction times for weak stimuli. Thus, reaction time differences for different contrast steps are smoothed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 22 January 1996/Accepted in revised form: 20 May 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhn, J., Wörgötter, F. Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biol Cybern 75, 199–209 (1996). https://doi.org/10.1007/s004220050287

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004220050287

Keywords

Navigation