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Abstract

We consider four problems on distance estimation and object location which share the common flavor
of capturing global information via informative node labels: low-stretch routing schemes [48], distance
labeling [22], searchable small worlds [30], and triangulation-based distance estimation [33]. Focusing
on metrics of low doubling dimension, we approach these problems with a common technique called
rings of neighborswhich refers to a sparse distributed data structure that underlies all our construc-
tions. Apart from improving the previously known bounds for these problems, our contributions include
extending Kleinberg’s small world model to doubling metrics, and a short proof of the main result in
Chan et al. [14]. Doubling dimension is a notion of dimensionality for general metrics that has recently
become a useful algorithmic concept in the theoretical computer science literature.

1 Introduction

In node labelingproblems one needs to assign short labels to nodes of a graph so that they capture some
(problem-specific) global information about distances and routes in the graph. We consider four problems
of this type: low-stretch routing schemes [48], distance labeling [22], searchable small worlds [30], and
triangulation-based distance estimation [33].

We approach these problems with a common technique catigd of neighborswhich refers to a sparse
distributed data structure that underlies all our constructions. The idea is that every stmies pointers to
(i.e. addresses of) some nodes called 'neighbors’; these pointers are partitioned into several 'rings’, so that
for some increasing sequence of bdll3; } aroundu, the neighbors in théth ring lie insideB;; the radii of
these balls and the selection of neighbors depend on the specific application. For a simple example, consider
the structure where each ba, has radiu?, and the neighbors in thieth ring are selected independently
and uniformly at random i;. In effect, rings of neighbors form an overlay network with a certain structure
imposed by the ball$B;} .

For the problems that we consider, the input is a finite metric space or, more generally, an undirected
weighted graph that induces a shortest-paths metric. We focus on metrics dblaving dimensiona
notion of low dimensionality for general metrics that has recently become a useful algorithmic concept in
the theoretical computer science literature [25, 36, 37, 52, 33, 50, 14] in many different contexts, including
metric embeddings, traveling salesman and compact data structures; in particular, in [33, 50] it was used
to model the structural properties of the Internet distance matrix in the context of distributed algorithms for
metric embedding and distance estimation.

*Preliminary version [51] of this paper has appeared in PODC 2005. This is the full version. The journal version (which
excludes Appendix B) will be published in the special issu®wtributed Computing

TDepartment of Computer Science, Cornell University, Ithaca, NY 1486&ins at cs.cornell.edu

!Note that the term 'neighbor’ here refers to the adjacency in this overlay network, not to the proximity in the input graph.



Any point set in &-dimensional,, metric has the following property [10]: fat = k£ + O(1), every set
of diametemw can be covered by~ sets of diametef/2. (The diameter of a set is the supremum of distances
between any two points in this set.) This motivates the following definititmubling dimensiomf a metric
space is the infimum of allx such that the above property holds. Clearly, doubling dimension ofrany
node metric is at modbg n. Doubling metricsare defined as metrics such that the doubling dimension is
upper-bounded by a constant.

By definition, doubling metrics generalize constant-dimensiépnaietrics. Doubling metrics is a much
wider class of metrics: in particular, there exist doubling metricaamdes that need distortidn(/log n)
to embed into any,,, p > 2 [25]. Moreover, doubling metrics subsume metrics of boungtédidimensior,
which have been considered in the long line of work on Distributed Hash Tables started by Plaxton et al. [49]
(see the intro of [28] for a short survey). Again, doubling metrics is a much wider class of metrics: as an
example of a doubling metric with high (super-constant) grid dimension, consider the, 2t ..., 2"}
equipped with the standard distance functitin, y) = |z — y|. Furthermore, unlike grid dimension, the
doubling dimension is robust, in the sense that the dimension of a subset is no larger than the dimension of
the entire metric.

Now let us discuss each of the four problems in more detail.

Low-stretch routing schemes. A routing schemen a network is a distributed algorithm that provides
routing of packets from any node to any other node. The underlying connectivity of the network is expressed
by a weighted graph, where weights represent delays on edges. Every isoagsigned aouting labeland
arouting table All routing decisions are local in the sense that they are based on the routing table and the
packet header, which includes the label of a target node.

Formally, a routing scheme on a familyof graphs consists of the following components:

(a) foreachz € G, an assignment of routing labels and routing tables to the nod@'s of

(b) an algorithm that inputs a routing table of the current node, and a packet header, and outputs the next
hop for this packet; the next hop must be an edg€'jmdjacent to the current node.

(c) an algorithm that inputs the routing table of nadend the routing label of some other nodeand
outputs the packet header such that the packet reacéiasting fromu.

The algorithms in (b) and (c) must be polynomial-time computable (with respect to the input length). By a
slight abuse of notation, we can talk about a routing scheme on a particular@ragh once the underlying

family G of graphs is clear. Such routing scheme consists of routing labels, routing tables, and the algorithms
in (b) and (c) 3

Let d,, be the length of the shortegv-path inG. Say auv-path hasstretchg if its d-length is at most
Bd.,. A routing scheme olt7 has stretctp if for any source-target pair the packet followgisstretch path.

For a given stretch we try to minimize two parameters: storage (the maximal size of a routing table), and
communication (the maximal size of a packet header).

In a trivial stretch-1 routing scheme, each node stores full routing table of the all-pairs shortest paths
algorithm. However, this routing table takes Qpn logn) bits, which does not scale well with Compact
low-stretch routing schemes have been introduced in Peleg and Upfal [48], and explored in a number of
subsequent papers (see [24, 47] for a survey). In particular, for any intege® there exists d4k — 5)-
stretch routing scheme on weighted graphs with log® n)-bit packet headers anﬁ(nl/’f)-bit routing

>Thegrid dimensiorof a metric is the smallest such that for any balB the cardinality ofB is at mosR* times the cardinality
of a ball with the same center and half the radius. Note thatlamensional grid has this property far= &k + O(1).
3A technicality: these algorithms must be the same for all grapis 8o that one could not encode all@finside the algorithm.



routing table size, bits packet header size, bits
Talwar [52] O(X)%(log* > A) O(alogA)
Chan et al. [14] (2)9@)(log A)(log Dour) O(alog §)(log A)
Theorem 2.1 ()9 (log A)(log Dout) same as above
Theorem 4.1 (H)9@(log A)(logn)(loglog A) 29 (logn) log(+ log A)
Follow-up work [7] | (1)@ (log A)(log n) [ogn]

(5 (log" n) 29 (log” n)
doubling dimensiomy, aspect ratia\, out-degre@ gt

Table 1:(1 + ¢)-stretch routing schemes for doubling graphs.

tables [53, 54]; this trade-off between the stretch and the size of routing tables is essentially optimal [48].
Moreover, there is no routing scheme on weighted graphs with stretch less thandrgHlit routing
tables [21].

OUR CONTRIBUTIONS We focus on routing schemes for weighted undirected graphs that induce dou-
bling metrics (for simplicity, let's call thendoubling graph3. In this setting Talwar [52] has achieved
compact(1 + §)-stretch routing schemes, for any givén> 0; the routing table size in his result has been
improved by Chan et al. [14]. Using rings of neighbors, we re-derive the result in [14] via the construction
and proof of correctness that are significantly shorter and simpler than the ones in [14]; our guarantees (The-
orem 2.1) are slightly improved, too. Moreover, we can givealy simple derivation (Theorem 4.1) if we
use our result on distance labeling and allow an exlog n) factor in the routing table size. The quanti-
tative results are summarized in Table 1. All these results extend to a related madetinf) schemes on
metrics* with poly-logarithmic out-degrees; see Section 4.1 for more details.

We note that the above guarantees are unsatisfactory if the aspecirétie largest distance divided
by the smallest distance) is very large, eXg—= 2". We wish to alleviate the dependency Anwe do it by
replacing the(log A) factor with (logn)(loglog A). The first step in this direction is Theorem 4.1, where
the improvement is for packet headers only. Furthermore, in Section 4 we improve both packet headers
and routing tables for routing schemes on metrics, and also (Theorem 4.2) for routing schemes on weighted
graphs that contain near-shortest paths with small hop-counts; the latter property is, intuitively, a natural
property of a "good” network topology.

FoLLow-upP woRK. Following the publication of the conference version of this paper, and building
on our techniques, Abraham et al. [7] further alleviate the dependency on the asped ffatioouting
schemes on graphs (see Table 1). In particular, one of their results essentially improves the packet header
size in Theorem 4.1 tflog n]. They also provide an extension where they get rid of the dependenge on
altogether, at the cost of extra poly-leg(factors in both routing table size and packet header size. This
result elaborates on our Theorem 4.2, eliminating the requirement of near-shortest paths with small hop-
counts. Abraham et al. [7] also refine our results on doubling metrics, see Section 4 for further details.

Related work on routing schemes. An important version of routing schemesriame-independent rout-

ing [12, 13], where the routing destination is specified only in terms of its unjtjen |-bit identifier that

is given as an input and cannot be changed by our construction. Currently the best known results for ar-
bitrary weighted graphs are: stret€h{k) with O(n!/*1log A)-bit tables [4], and stretch 3 wit®(,/n)-bit

“A routing scheme on a metrid@’, d) is a routing scheme on a directed graph®@n= (V, E) such that for any edgev € F,
the weight of this edge ig..,. The crucial point here is that we are free to choose the edge éetich is, essentially, an overlay
network). The out-degree df becomes another parameter to be optimized.



tables [3]; both routing schemes use poly-log packet headers.

For weighted graphs that induce doubling metrics, the extra restriction of name-independence results in
more demanding storage requiremerttstd)-stretch routing witho(n)-bit routing tables is no longer possi-
ble for anyd < 2 [7]. However, therés a routing scheme witty(1)-stretch and polylog storage/headers [7].
Moreover, for anyy > 0 there exists &1 + ¢)-stretch routing scheme on low-dimensiofaiclideanmet-
rics [2], also with polylog storage and headers, which is 'almost’ name-independent (node labels include
Euclidean coordinates).

A number of results on name-independent routing has focused on the case of bounded grid dimension
(see the intro to [28] for a short survey). The best current results [1, 5] achievé)-stretch with poly-log
storage/headers for routing on metrics and on graphs, respectively.

Searchable small-world networks. The small-world networks have been an active topic in many branches

of social and natural sciences. The 'small-world phenomenon’, also known as the ’six degrees of separa-
tion’, has been discovered in a seminal work of Milgram [45] and recently confirmed by Dodds et al. [15].
Motivated by Watts and Strogatz [56], Kleinberg [30, 31] has articulated another striking aspect of 'small
worlds’: that a greedy routing algorithm can find short paths to most targets using only local information.
Kleinberg went on to suggest several mathematical models where this happens [30, 32]. In particular, he
considered a constant-dimensional grid and proved that if every node chooses a constant number of long-
range contacts from a fairly natural probability distribution, then in expectation a greedy routing algorithm
finds O(log? n)-hop paths for every query. The follow-up work (e.g. [38, 42, 41, 17, 43]) has focused
on small worlds on hierarchies and grid-like graphs, with versions of the basic greedy routing from [30].
This line of work has also found applications in the design of peer-to-peer systems (e.g. [40]). For more
background on small-world networks, refer to a very recent survey by Kleinberg [34].

The following design space emerges. We are given a notion of distance such that every node can locally
compute its distance to any given node (e.g. we may assume that node names include informative labels that
enable such computation). For this distance function, we need to provide an overlay network of long-range
contacts, and specify a routing algorithm which finds short paths to every target using only local information
about the contacts. The long-range contacts are usually given as a probability distribution which has the
following informal property: if from the point of view of a given nodetwo nodesv andw are similar,
then these two nodes should have a similar probability of being chosen as contacté/efwould like to
minimize the number of long-range contacts (i.e. the out-degree), and the path length.

Most of the previous work has considered the distance induced by a given (possibly directed) unweighted
graph of short-range contacts; note that one could start from this notion of distance and recover the short-
range contacts as all nodes within distance 1. Abstracting away the useful small-world properties of grids
and hierarchies, Kleinberg [32] introduced searchable small worlds on distance functions induced by certain
families of node sets. Here we take a somewhat different (and perhaps more basic) approach: we consider
distance functions that are metrics, and we wish to extend Kleinberg’s small worlds beyond those induced
by hierarchies and grid-like graphs. Namely, we extend them to doubling metrics.

We use routing algorithms such that the next hop is chosen by only looking at the current node’s contacts,
which is a desirable property since (intuitively) this is the minimal amount of information a routing algorithm
can be allowed to use. More formally, the next hop is chosen among the current node’s contacts, by looking
only at distances to these contacts and distances from these contacts to the target. Let us call such routing
algorithmsstrongly local Thegreedyalgorithm used in [30] is a strongly local routing algorithm that just
chooses the contact that is closest to the target.

OUR CONTRIBUTIONS We extend Kleinberg's model to doubling metrics. While it is relatively straight-
forward to achieve out-degre@(logn)(log A) andO(log A)-hop paths, wheré\ is the aspect ratio, it is
quite non-trivial to handle the case of super-polynomial To remedy this, we obtai®(logn)-hop paths



even if A is exponential im. In our first result the out-degree is (still) proportionallég(A), suggesting
that it is a natural lower bound since we need some long-range contacts for each ondlog the dis-
tance scales. However, our second (and much more complicated) result breaks this barrier, achieving the
out-degree(log? n)/log A. This result uses a routing algorithm that jumps 'sideways’ whenever it cannot
make good progress towards the target. To the best of our knowledge this is the first small-world model with
anon-greedystrongly local routing algorithm.

We note in passing that our results trivially extend to a setting where we are given a graph of local
contacts, and we add exactly one long-range contact per node; see Section 5.3 for further discussion.

Related work on small-world networks. In the literature on searchable small-world networks several
non-greedy routing algorithms have been suggested. In Manku at al. [41] the algorithm looks at all contacts
of contacts of the current node, and (greedily) forwards the message to one that is closest to the target. In
Martel and Nguyen [42] and Fraigniaud et al. [17] the algorithm looks at several nodes that are closest to
the current node, looks at their contacts, among these contacts chooses one (let us)g#lfiat is closest

to the target, and tries to deliver the message by forwarding it to one of the contacts af Finally, in

Lebhar and Schabanel [38] the algorithm has access to contacts of the previously visited nodes. Note that
all these non-greedy algorithms aret strongly local.

Following the publication of the conference version of this paper, we became aware that concurrently
with our work, two other papers have independently considered extending searchable small worlds to
broader classes of graphs. Specifically, Duchon et al. [16] consider graphs of low grid dimension, and
Fraigniaud [18] work on graphs of bounded treewidth. An even more recent paper [8] considers weighted
minor-excluding graphs. Furthermore, Fraigniaud et al. [19] have recently provided a complementary im-
possibility result for searchable small-worlds on an infinite family of graphs of large doubling dimehsion.

Distance labeling. In a distance labeling schempL(s), each node is assigned a short label so that the
distance between any two nodes can be efficiently approximated just by looking at their labels. Formally, a
k-approximatepLs for a classM of metrics consists of a polynomial-time computable real-valued function
f(x,y) and, for each metrid/ € M, an assignment of labels, to nodesu of M such that for each node
pair uv, f(L,, L) is within factor of & of the trueuv-distance. By a slight abuse of notation, we can talk
about abLs on a particular metrid/ € M once the underlying family\ of metrics is clear. Givert,
we'd like to minimize the maximal bit-length of node labels.

In a trivial DLS, the label of node: would encode the distances to all other nodes, takin@ (plog A)
bits. ExactbLs are known for two families of unweighted graphs: for bounded-genus graphs and for
graphs with constant-size separators, v@(h/ﬁ)- andO(log® n)-bit labels, respectively [22]. For weighted
graphs, approximateLs with sublinear label length have been introduced by Peleg [46], see [24, 47] for
a survey. In particular, for any integérthere exists &2k — 1)-approximatedLs on weighted graphs with
O(n'/*log A)-bit labels [53]; a complementary lower bound®@fn'/*) is given in [53, 23].

Major improvements are possible for doubling metrics. For any (0, %) Gupta et al. [25] provided
an embedding intd., which translates into &l + §)-approximatepLs with ()9 (logn)(log A) bits per
label, wherex is the doubling dimension andl is the aspect ratio. Using a different technique, Talwar [52]
improved this by a factor oflogn), and gave a lower bound ¢£)%(@). Slivkins [50] observed that since
the aspect ratid\ can be arbitrarily large with respectq it is desirable to alleviate the dependencyn
he gave a construction witth)°(*)(log® n) (logn + loglog A) bits per labef This has been improved by

5The cited result is for the "one long-range contact per node’ setting; note that it trivially extends to our setting, too.
5The conference version of [50] erroneously cIaim(%dO(“) (log? n)(log log A)-bit labels.



routing schemes small-world networks

Thm 4.2; extension to large A Thm 5.1b: out-deg O(log A)Y2
Thm 4.1: simple black box : . .
. r ) . -
routing scheme «—2=22Thm 3.4: distance labeling Thm5 13 out-deg O(log A)
Thm 2.1: basic routing scheme Thm 3.2: triangulation simple: O(log A)-hop paths

K

basic idea: rings of neighbors |

Figure 1: Relations between our results: arrows indicate the flow of ideas.

a factor of(logn) in Mendel and Har-Peled [44]; using a construction from [22], for ang .9 and any
A > nloe™ they derived a lower bound 6t(log n)(loglog A) bits per label.

OUR CONTRIBUTIONS We obtain the result in [44] as a simple corollary of our result on triangulation.
We improve it to(1)9(®)(logn)(loglog A) bits per label using the ideas from our first result on routing
schemes. For angx > n'°¢™ and bounded, ¢ this is optimal up to constant factors.

Triangulation. Motivated by systems for estimating Internet latencies via the triangle inequality [29, 26,
35, 20], Kleinberg et al. [33] introduced the notiontofangulation on a metric. Triangulation [33, 50] of
orderk is defined as a labeling of the nodes such that a label of a givenmodasists of distances from

to each node in Beacon sefS, of at mostk other nodes. Then given the labels of two nodendv, one

can use the triangle inequality to upper-bounddhedistance byD:, = min(d,; + d.»), and lower-bound
itby D7, = max |dy, — dyp|, Where thenax andmin are taken over ahh € S, N S,. An (¢, d)-triangulation

is a triangulation such thadd;, /D, < 1+ § for all but ane-fraction of node pairsw. In particular, this
inequality holds whenever there exists some nbde S, N S, that lies within distancéd,,,, /3 from u or

v. Note that if it holds then either bound can be seen @is-a ¢)-approximate estimate on the-distance,

and, moreover, these bounds provide a "quality certificate” for the estimate.

Distributed algorithms for constructing low-ordér, §)-triangulations on doubling metrics have been
developed in [33, 50]; in these triangulations all nodes have the same beacon set. An obvious flaw in these
results is that they provide no guarantees for a significant fraction of node pairs. Accordingly, Slivkins [50]
considered(0, )-triangulations and gave a construction (with distinct beacon sets) that achieves order
(1)0(@)(10g? n), wherea is the doubling dimension.

OUR CONTRIBUTION: We construct &0, §)-triangulation of order(%)o(a)(logn). Using the upper
boundD™ as a distance estimate, we recover the result in [44] on distance labeling.

The unifying technique. In this paper we present results on four related, yet different problems. These
results are unified by a common technique: rings of neighbors. Moreover, these results are intertwined, in
the sense that one result elaborates ideas pioneered in another. This flow of ideas is represented in Figure 1.

"This is what they actually prove, although they only claim their result for Any 4™.



Note that both Theorem 4.1 and Theorem 4.2 build on Theorem 3.4; however, Theorem 4.1 just uses it
as a black box, whereas Theorem 4.2 imports its techniques and elaborates on them. In fact, the proof of
Theorem 4.2 is the culmination of our techniques for routing schemes, triangulation and distance labeling.

Recall that inrings of neighbors the i-ring neighbors of a given node lie in a ball B; aroundu,
for some increasing sequence of bdlB; }; the radii of these balls and the distribution of neighbors in a
given ring depend on the specific application. One trick that has been particularly useful in our proofs is to
combine the following two collections of rings of neighbors. In the first collection, the cardinalities of the
balls B; grow exponentially, and théring neighbors are distributed uniformly on the node sef3pf In
the second collection, thedii of the B;’s grow exponentially, and (if one draws on the analogy between
doubling metrics and low-dimensional Euclidean metrics)sthimg neighbors are distributed uniformly in
the space regiorthat corresponds t@;. For some applications, e.g. in Section 2, the second collection
alone suffices.

In a more abstract view, a collection of rings of neighbors is a tractable representation for the fine
structure of the underlying graph. The idea of using a tractable structure-preserving representation as a
unifying technique for various problems on graphs is not new; several representations have been suggested
in the literature, e.g. [11, 12] for general graphs and [52, 44] for doubling graphs. Our representation seems
to be particularly suitable to the problems that we consider in this paper.

Roadmap of the paper. We start with a simple proof of the main result in Chan et al. [14] on routing
schemes. In Section 3 we present our results on triangulation and distance labeling. We return to routing
schemes in Section 4; in particular, we consider routing schemes on metrics in Section 4.1. In Section 5
we discuss our results on searchable small-world networks. We conclude and discuss open questions in
Section 6.

1.1 Preliminaries

Recall that the defining property of a doubling metric is that any set of dianaetan be covered by a
constant number of sets of diameter at md&2. We will use this property via a more concrete corollary
where we cover with a constant numberoails:

Lemma 1.1 In a metric of doubling dimension, any set of diameted can be covered b®* balls of
radiusd/2*, for any integerk > 1. The desired cover can be efficiently constructed.

Proof: Let « be the doubling dimension. Consider a sebf diameterd and apply the definition of the
doubling dimension recursivelly times. It follows thatS can be covered bg®* sets of diameter at most

d/2*. Pick any one point from each of these sets. Tlecan be covered witR** balls of radiusd/2"
centered in the selected points. Moreover, it follows that the desired cover can be efficiently constructed by
a simple greedy algorithm: select any nodec S, add the ball around to the cover, delete frony all

nodes within distanced/2* from v, repeat untilS is empty. O

Throughout the paper, we denote the underlying metrid fgo thatd,,, is the distance between nodes
u andv. Let B,(r) be the closed ball of radiusaroundu. Letr,(¢) be the radius of the smallest closed
ball aroundu that contains at least: nodes. Fork € N define[k]| as the sef{0,1...k — 1}. Define an
enumeratiorof a finite setS as a bijectionS — [k], wherek = |S]|.

Throughout the papen, denotes the number of nodesdenotes the doubling dimension, aAdlenotes
theaspect ratiowhich is the largest distance divided by the smallest distance. Notéthah be arbitrarily
large with respect te anda. For instance, consider a 3-node metric spte, A}, equipped with the
natural distance functiod(z, y) = |z — y|. However, it is easy to bound the aspect ratio from below:



Lemmal.2 1+ logA > élog n, for any metric with aspect ratich and doubling dimension..

Proof: For simplicity let us divide all distances by the smallest distance. Then the smallest distance is 1,
and the diameter iA. Recursively applying the definition of the doubling dimensiaiimes, it follows that

we can cover the metric with®* sets of diameter at mogt/2%. Takingk = 1+ |log A|, we can cover the
metric with 2¢* sets of diameter less than 1. Each of these balls contains at most one nog¢fe sa. O

Say a measure is-doublingif for any ball B, (r) its measure is at most times larger than that of
B, (r/2). Intuitively, a doubling measurg is an assignment of weights to nodes that makes a metric look
growth-constrained; in particular, for thenodeexponential ling a one-dimensional sgR! : i € [n]},
we havey(2?) = 2¢=". For any finite doubling metric, a doubling measure exists and can be constructed
efficiently [55, 58, 44F Quantitatively, the following theorem holds:

Theorem 1.3 ([55, 58, 39, 44]For any complete metric of doubling dimensieithere exists 2*-doubling
measure. If the metric is finite, such measure can be constructed efficiently, i@ 2H€&*) n log n).

Forr > 0 anr-neton a metric is a se$ such that any point of the metric is at distance at masbm
S, and any two points it are at distance at leagt It is easy to see that for a finite metric such set exists
and can be constructed greedily, starting from any (possibly empty) set of points that are at distance at least
r from each other. It is often useful to considenets in conjunction with doubling metrics, because of the
following simple and well-known fact (e.g. see [25]):

Lemma 1.4 Anyr-net has at mostdr’/r)® elements in any ball of radius > r.

Proof: Let S be anr-net, and letB be a ball of radius’ > r. Recursively applying the definition of
doubling dimensior? + |log’/r| times, we cove3 with at most(4r’/r)“ sets of diameter at mosy2.
Each of these sets contains at most one node of O

2 A low-stretch routing scheme for doubling metrics

In this section we'll use rings of neighbors to derive a significantly shorter and simpler standalone proof of
the main result in Chan et al. [14]; the ideas from this proof will be used in the subsequent results.

Theorem 2.1 Consider a weighted grapty with out-degreeDy,. Suppose its shortest-path metric has
doubling dimensiony and aspect ratioA. Then for anys € (0,%) there is a(1 + §)-stretch routing
scheme orG with O(alog 1) (log A)-bit packet headers and routing tables @)°(®) (log A)(log Dout)

bits. Moreover, such routing scheme can be efficiently computed.

Proof: Let d be the shortest-path metric 6f. For eachj € [log A] let G; be someA /27-net ond; let
r; = 4A/627 and define the-th ring of neighborsof nodeu as the set,; = B,(r;) N G;. Note that
by Lemma 1.4 each node has at méSt= (16/9)* j-ring neighbors. The nodes in;Y;,; are called the
neighborsof . Intuitively, we think that. has a virtual link to each of its neighbors; note that these virtual
links arenotthe physical links in the underlying connectivity gra@h

To connect the virtual links witld7, for each neighbov the routing table ot: will contain thefirst-hop
pointer from u to v, which is, informally, the first edge of some shortestpath inG. We will define the
first-hop pointers formally later in the proof.

8Bibliographic note: the original existence result (for compact metrics) is due to [55]. The proof has been simplified by [58]
and extended to complete metrics in [39]. The algorithmic result builds on the construction from [58] and is due to [44].



Fix some node; let us think oft as a potential target node. For any givgrby definition ofY;; there
exists aj-ring neighbor oft that lies within distance\ /27 from ¢; let us fix one such neighbor, call jt;.
Consider the sequendd;; : j € [logA]}. The nodes in this sequence "zoom” in basj increases. Let
us call this sequence tlmoming sequenasf ¢.

A routing label oft will contain (a description of) its zooming sequence, which will be used to guide
the routing as follows. Suppose nodevants to send a packet to notdd=or somej nodeu has a neighbor
v = fi; € Y, that lies within distancéd,,; from ¢. Essentially, node: wants to forward the packet tq
herev becomes an intermediate target. In generalpes not have a direct link ta Instead, the packet is
sent via the edgew which is the first-hop pointer to. It will turn out thatv is also a neighbor oy, so we
can again use the first-hop pointertpand so on. This way the packet gets delivered tia a shortest path
using the first-hop pointers. Once the packet reachamew intermediate target is selected. Eventually the
next intermediate target that we choose will be the actual target

We want a routing table of each nodeto list all its neighbors. Similarly, we want a routing label
of each nodé to list its zooming sequence. The simplest way to achieve this is to assign each node a
global [logn |-bit identifier, and just list the corresponding identifiers. However, this leads to unwanted
extra (logn) factors in the storage requirements. Later in the proof we will show how to reduce storage
using shorter local identifiers. No matter what routing tables and routing labels we use, all we need from
them is summarized in the following claim (which is trivial if we use global identifiers).

For any two nodesu, t), let us defingj,; be the maximuny such thatf;; € Y,; for eachi < j. Note
thatj.. > 0 sincefq gy € Go = Y(10)- L€t gus; be the first-hop pointer from to f;;, or null if u = f;;.

Claim 2.2 Given the routing table of and the routing label of we can findj,; and g,;; for eachj < j,;.

Now using this claim we will define the routing algorithm and prove its correctness. Then we provide a
more space-efficient way to define routing tables and routing labels which will satisfy Claim 2.2 and lead to
the desired storage complexity.

We start with a very useful fact about the zooming sequenfes: Y,,; for a sufficiently small;.

Claim 2.3 For any two nodesgu, t) and anyj < [log(A/dd,:)]| we havef;; € Y,;. In particular, for any
nodet and anyj € [log A] letting f = f(; j_1) we havef;; € Yy;.

Proof. By definition f;; € G;. Itis easy to check thaf;; lies within distance-; from u, so f;; € Y,,;. The
claim applies tof = f(; j_1) sincedy, < A/627. 0

ROUTING ALGORITHM. For a packet with target the header consists of the routing labekahd the
number;j € [log A] such thatf;; is the currentntermediate targetrecall that the routing label dfcontains
the description of its zooming sequence such that Claim 2.2 holds. Suppose madgs to send a packet
to targett. Then using Claim 2.2 node computesj = j,; andg,:;, choosesf;; to be the intermediate
target, and sends the packet alang;, the first edge on some shortest path froto f;;.

Now suppose node receives a packet with targetand intermediate targef,;. We will prove that in
this case we havg,, > j (see Claim 2.4b). First node checks whether it is the targetlf not, then via
Claim 2.2 it computeg,; andg,;; and, in particular, checks whether the intermediate targeitiself. If it
is not, i.e. ifg,; is not null, theru just forwards the packet along the hgp;.

If v is indeed the current intermediate target, then it needs to select a new one. Specifically, it resets
J = ju and selects;; as the new intermediate target. Then it recompytgs and forwards the packet
along the corresponding hop. This completes the routing algorithm.

Claim 2.4 Here are some key properties of the routing algorithm:

SWithout loss of generality, the routing table and the routing label of every node contain its global identifier.



f=Te)

j+1

W= fi

Figure 2: Translation between host enumerations ahd f = f;;.

(a) each intermediate target is at Iea%times closer to the target than the previous one.
(b) if nodev receives a packet with primary targeand intermediate targef;; thenj,; > j.
(c) each packet follows a shortest path to each intermediate target.
Proof: (a) The next intermediate target is chosen when the current intermediate taigieeached; it is
defined asf;; such thatj = j,,. By Claim 2.35 > [log(A/dd..)], SO f; lies within distanceéd,,; from ¢.
(b) Let P be this packet. We will use induction on the path traversedbyrhis path starts when some
nodew, choosesv = f;; as an intermediate target; then the current level is sgt to,). For the induction
step, assume nodereceivesP from some node: such thatj,;, > j; we need to show that, > j, too.
Indeed, note thab € Y,,; := B,(r;) N G;. Since the packet is forwarded along a shortestpath, we
haved,, < du., < rj. Itfollows thatw € Y,;. It remains to show thaf;; € Y,; for everyi < j. Indeed,
by the triangle inequalityl,; < dy, + duwt < r; + A/27. Consequentlyd,; + A/2" < r;. Therefore,
fri € Bt(A/2Z) - Bv(ri).
(c) More precisely, we need to show that if nodesends a packe? with intermediate target = f;;
then P reacheav and traverses path of total length),,. This is because each nodeon the route ofP
forwards it alongy,;, the first hop of some shortesty-path. O

Now it is straightforward to prove correctness of the routing algorithm:

Claim 2.5 Every packet reaches its target and follows a path of streétehO(¢).

Proof: Consider a packet sent by nodeto targett. By Claim 2.4b the algorithm is well-defined. By
Claim 2.4c the packet reaches each intermediate target, and by Claim 2.4a it reathedistance from
thei-th intermediate target tois at mosty‘d,,; by Claim 2.4a, so by Claim 2.4c the total path length is at
mMostY ", _o 8'dut(1 + ) < dut(1 + O(9)). O

It remains to provide space-efficient routing tables and routing labels which satisfy Claim 2.2. Recall
that our goal is to replackog n|-bits global node identifiers with shorter 'local’ identifiers.

For each node, let us fix some enumeratian,; (-) of each ringY,,;; let us call it thej-th host enumer-
ation of u. Recall that an enumeration of a sets a bijectionS — [k], wherek = |S|. Since the ring%,o
coincide for all nodes, we can guarantee that so do the corresponding enumeratigns

Consider nodeg’ = f;; andw = f; j;1), for some target and integerj. Note that by Claim 2.3 we
havew € Yy ;;1). Consider some nodesuch thatf € Y,; andw € Y{, ;;1). For such trianglesu, f, w)
(see Figure 2) we will provide a 'translation’ between host enumerationsaofd f, in the following sense:
knowingpy; (f) andep s ;11)(w) we will be able to findp,, ;1) (w).

Specifically, for eacly € [log A] the routing table of each nodewill include the translation function
Cuj  [K] x [K] — [K] such that

Cuj (Pug (), @5, j41) (W) = @ (u, j+1)(w) wheneverf € V,; andw € Yy, j11) N Y (5 j41),
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andnull otherwise. Clearly, each such function can be stored usifflog K bits. Recall thatk' =
(16/0)« is the maximal cardinality of each skf,;.

Let us formally define the first-hop pointers. For each nadee fix some enumeration,(-) of all
outgoing links in the underlying connectivity gragh For two nodes.v, we define thdirst-hop pointer
fromu tov as¢, (w) such thatuw is the first edge of some shortest-path; each such pointer can be stored
using only[log Doyt bits.

For every node, let us encode its zooming sequence via host enumerations of its elements as follows:
let us definev = pi0( fi0), and for eachy > 1letny; = ¢r;(fi;), wheref = f(; ;_1). Thisis well-defined
because by Claim 2.3;; is a j-ring neighbor of nodef. It is easy to see that the sequer{eg;} can be
stored using)(log K)(log A) bits.

DATA STRUCTURES Therouting tableof a given nodeu consists of the translation functiogs; and
the first-hop pointers to all its neighbors. Ttoiting labelof a given nodée is the sequencén,; }.

Having defined routing tables and routing labels, it remains to prove Claim 2.2. Here the difficulty is
that nodeu needs to "decode” the zooming sequence a@fhich is given indirectly: each elementis given as
an index in the host enumeration of the previous element. The proof follows in a straightforward way from
our discussion of the translation functions. Indeedylgt= ¢,;( f;); this is well-defined for allj < j;.
We will use induction ory to computen; for all j < j,;. Host enumerationg,,q coincide for all nodes,
Somgy = nyo. Suppose for somg < j,; we knowm,; and we'd like to computen;,. Let f = f;; and
w = fiyj+1)- Since we kKnown; = ¢y;(f) andny; = ¢g;(w), we can findn; 1 = ¢, j+1)(w) using the
translation functior(,;. We iterate the above procedure while we can, i.e., while Y, ;). We stop
exactly atj = j,;. This completes the proof of Claim 2.2 and Theorem 2.1. O

3 Triangulation and distance labeling schemes

We start with the result on triangulation, then we elaborate it using the ideas from the previous section and
achieve an optimall + ¢)-approximate distance labeling scheme. We use the following lemma which is
implicit (but never articulated) in Slivkins [50] (see Appendix A for a self-contained proof).

Lemma 3.1 Consider a finite metric of doubling dimension equipped with a probability measuye Let
r.(€) be the radius of the smallest ball aroundthat has measure. Then for anye > 0 there exists an
(e, 11)-packing a family F of disjoint balls, of measure at least2°(®) each, such that for any nodethe
ball B, [67,(¢)] contains some ball fronF. Moreover, sucl¥# can be efficiently computed.

It is easy to see that jf is a doubling measure then for every nadéhis (e, p1)-packingF has the two
useful local properties of an-net,r = 6r,(¢): firstly, the ball B,(r) contains at least one element5f
and secondly, for any the ball B, (kr) contains at most©(®) elements ofF. The notion of(e, 11)-packing
allows us to state these properties in terms of the underlying doubling measure, and, moreover, to generalize
them to arbitrary probability measures. In fact, we will yseu)-packings such that is the normalized
counting measurg(S) = |S|/n.

Theorem 3.2 For any§ € (0,1) any metric has g0, §)-triangulation of order(})°(®)log n, wherea is
the doubling dimension. Moreover, such triangulation can be efficiently computed.

Proof: The label of every node will consist of distances to a subset of nodes which we calhitighbors
of u. These neighbors will be partitioned into two types of rings: there will’dbeneighborsand Y;-
neighbors i € [logn]. All X;-neighbors and alt;-neighbors ofu will be contained in the open balls
Bu,i-1) andB, (12r,;/9), respectively, where,; = r,(27%) andB,; = B,(r;). This is the construction:
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e For each ¢ [logn] let F; be a(27%, u)-packing guaranteed by Lemma 3.1, wheris the counting
probability measure. Fix one pointz € B for every ballB € F;. Define theX;-neighbors ofu as
allnodesh such thatB C B, ;_1)-

e Letus greedily construct a sequence of nesteetsG,z a1 C ... C G1 C Go, Whereg; is a2’-net
for eachj € [log A]. Then for each € [logn] let us define thé’;-neighbors ofu as all nodes in
B, (12r,;/0) that lie inG; such thatj = max(0, Uog(% Tui)]).

The above construction is efficiently computable since sq2ré, 11)-packings and the nestéd-nets.

Let's bound the number of neighbors. Fix nodeSince each balB, ;) contains at mosz®(®) balls
B € F;, there are at mosi®(®) X;-neighbors for each. By Lemma 1.4 there are at mogd(1/6)]°(®
Y;-neighbors. It remains to prove that our construction is inde@d &-triangulation. First we need a basic
fact about the radii,;:

Claim 3.3 For each node paiuv and anyi € [logn] we haver,; — ry;| < dy,.
Proof: Since B,(r,;) C Bu(duw + 1), the latter ball contains at least/2’ nodes, so it follows that
Tui < dyy + Tvi- Similarly, sinceB,; C By (dyy + 7y;) it follows thatr,; < dy, + rui- O

Fix a node pairuv and letd = d,,. We need to show that a ball of radidd around eithemn or v
contains a common neighbor of batrandv. Suppose there is no such node. tet (1 + §)d and choose
i suchthat,; <r+d < rq;_1). We choose with respect ta;, but by Claim 3.3 this yields some bounds
onr,;'s as well; specificallyr(, ;1) > 7 andr,; < r + 2d.

First we make use of th&;-neighbors. The balB,(6r,;) contains some&3 € F;, so in particular it
contains some node = hp. If 6r,; < dd thenB, (6r,;) is contained in botlB, ;_,) and B, ;_1), hence
nodew is an X;-neighbor ofu andv, contradiction. SimilarlyB, (6r,;) contains some balB € F;, so if
6r,; < od then the nodev = hp is an X;-neighbor ofu andv, contradiction. Therefore letting = dd /6
we haver < r,; <r+dandz < ry, < r+ 2d. We will use (all of) these four conditions to show that the
Y;-neighbors give us the desired common neighbor.

Indeed, consider the balt = B,(dd) and letj = [log(dd)]. Then there exists a node € G; N B.
Now sincer,; > x it follows that B C B, (12r,;/0) andj < log(6r,;); moreover,j > |log(dry;/4)]
sincer,; < r + d. Therefore by definitionv is aY;-neighbor ofu. Similarly, w is aY;-neighbor ofv,
contradiction'® Theorem proved.

O

Our (0, 0)-triangulation can be extended to(& + §)-approximate distance labeling scheme where
each label consists dO(1)]9®)(logn)(logn + loglog A) bits, matching the result of Mendel and Har-
Peled [44]. Indeed, we assign each nada unique|log n|-bit identifier 1D (u) and store each neighbar
of v as a pair o (u), dy,). We use the upper boun™ for the distance estimate, so it suffices to store
dyy as a0(log %)-bit mantissa and) (loglog A)-bit exponent. This is because if two numbefsy’ are
(1 + &)-approximations of the true valuesy, then the sum’ 4 ¢/ is (1 + ¢)-approximation ofz + 3.1t

Extending a result from [22], Mendel and Har-Peled [44] constructed a family of doubling metrics for
which any 1.9-approximate distance labeling scheme needs

Q(logn)(loglog A — loglogn) (1)

bits per label. This i€2(logn)(loglog A) as long asA > nl°8°" for any constant > 0. Their construc-
tion works for infinitely manyn and for (essentially) a full range of possible values of the aspect fatio
Specifically, it works for some\ in every interval(n/2)™; n] such that\/ > 2 is an integer.

1ONote that similarly we can also prove thatndv have a commo#y;-neighbor in the balB,, (5d).
"Note that the difference’ — 3’ is not necessarily a good approximation for- 3, so we cannot use the lower bouhd".
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Our next result shows that we can elaborate our distance labeling scheme, getting rid| lofzthé-
bit node identifiers and achievin@, s(logn)(loglog A)-bit labels. This is an improvement whenever
loglog A = o(logn). Moreover, for anyA > n!°8™ and fixeda, § we match the lower bound (1) up
to constant factors.

Theorem 3.4 For any § € (0, %) any metric has g1 + §)-approximate distance labeling scheme where
each label consists dD(1)]9(®)(logn)(loglog A) bits, wherex is the doubling dimension and is the
aspect ratio. Moreover, such scheme can be efficiently computed.

Proof Sketch: We will elaborate the construction in the proof Theorem 3.2 using the ideas from the proof
of Theorem 2.1. Specifically, we will use the zooming sequences and the host enumeration technique.
Keep the notation from the proof of Theorem 3.2. Recall that for gach[log A] we fix some2/-net
g;. For each node and each < [logn] fix a nodef,; € G;, | = [log(ry:/4)], that lies within distance
r4i/4 from u. Such node is &;-neighbor ofu by definition of theY;-neighbors; it is possible that,; = u.
Call the sequencéf,; : i € [logn]|} azooming sequena v, and denote iff,,. Moreover, for each node
fix some enumeratiop,,(-) of all its neighbors; we call it th@ost enumerationof w.
From the proof of Theorem 3.2 we know that for any given node paithere exists a node within
distancejd,,, from u or v such thatug is a common neighbor af andv; recall that distances froneg to u
andv give us a desired estimate. However, we know suglexists, it is non-trivial to identify it since we
do not have global node identifiers. In our contextidentifya common neighbow of v andv means to
find o, (w) andy, (w).
Supposeuy is within distanceyd,,,, from v; then, essentially, we identify it by zeroing in ervia the
sequencef,. We will be able to identify, sequentially, afl,; from i = 0 to somei, such thatf = f, ;)
lies "reasonably close” to; eachf.,; will help us identify f(, ;1) Thenf will help us identifyw.
The problem is that usin@log n| bits to identify the elements of a zooming sequence &f again too
expensive. Moreoverf(, ;1) might not be a neighbor of,;, andwy might not be a neighbor of, so
we cannot quite use the host enumeration technique the way it is used to prove Theorem 2.1. Instead, for
every node we will define another set of nodes calletlial neighborsin such a way that eaclf, ;1)
is avirtual neighbor of f,;, andwy is avirtual neighbor of f. These virtual neighbors are used only to
define "pointers” between consecutive elements in a zooming sequence: fof, gach ;) is given only a
pointer fromf,;, namely as an index in some fixed enumeration of virtual neighbofs;qfvhich we call a
virtual enumeratiorof f,;). If every node has at mos{ virtual neighbors, then each such pointer uses only
[log N'] bits. The crux of the proof is to define a sufficiently small set of virtual neighbors with the desired
properties. We will actually hav&/ = O, s(logn) log(A). 12 To translate virtual enumerations into host
enumerations, we define a translation function similar to the one in the proof of Theorem 2.1. O

In the remainder of this section we give the full proof of Theorem 3.4. Keep the notation from the
proof of Theorem 3.2. LefX,; andY,; denote the sets ak;- and Y;-neighbors ofu, respectively; let
X, = U; X,; andY, = U;Y,;. Recall that for each € [log A] we fix some2j-netgj. For each node and
eachi € [logn] fix a nodef,; € G;, I = [log(ryi/4)], that lies within distance,;/4 from u. Such node
lies inY,,; by definition of theY;-neighbors; it is possible thgt,; = u. Call the sequencgf,; : i € [logn]}
azooming sequencand denote iff;,.

For each node we define the sets

Zuy; = Bu(27) NG, wherel = max(0, [log(275/64)]).
T, = X,UZ,UUpex,Z,], whereZ, = U5 Z,;.

2Note thatlog N = (loglogn) + (loglog A) + O, s(1). To avoid the(log log ) factor in the theorem statement, we note that
due to Lemma 1.2 it is subsumed byg log A).
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The elements of’, will be called thevirtual neighborsof u. Note that the definition of,,; is similar to that
of Y,,; since both are defined in terms Bf,(r) andg; for some related values efandi; essentially; and
2! determine the corresponding distance scale. The principal difference is that i6rtiiEe neighbors this
distance scale i®(r,;), whereas for the&Z-type neighbors it i (27).

We will need the following crucial facts about virtual neighbors:

Claim 3.5 Fix nodeu andi € [logn]; let f = f(,;_1). Then
(@) if ru; < 7(y,i—1)/12 then the nearesX;-neighbor ofu is an X;-neighbor off.
(0) if 2 € [Srui; 67wl @ < 7y i—1)/2 then any nodev € Gjjoq, N By () is a virtual neighbor off.
(c) in particular, nodef,; is a virtual neighbor off.

Proof: Letr =7, ;1) andz = r ;_1).-

For part (a), note that by Lemma 3.1 the neat€sheighbor ofu is some nodé.g € B € F; such that
the ball B is a subset o3, (67;). Then by Claim 3.3 — d,y > r —2d,s > r/2 > 67y, and consequently
By (674i) C Bu(z — dus) C Bf(z). Part (a) follows by definition of thel;-neighbors.

For part (b), it is easy to check thatif;, > /12 thenw € Z;; for j = [log(x + d.s)]. Now suppose
r4i < r/12 and letv be the nearesX;-neighbor ofu. Then by part (a) is anX;-neighbor off. Moreover,
sinced,, < 6ry; itis easy to see that € Z,; for j = [log(dy, + x)]. Sincew € Z,; andv € Xy, it
follows thatw € T,.

Finally, part (c) follows from (b) withe = r,; /4. O

Let us define the labels of nodes. For each noedeet us fix some enumeratiap, (-) of X,, UYy,; call
it a host enumerationf «. Since any ballB,y contains all nodes, the sel§,y coincide for allu, and so
do the set¥’,. Therefore we can guarantee that all host enumerations coincidg,en Y,o. Fix some
enumeration),,(-) of each sef’,; call it a virtual enumeratiorof «.

Fix nodew and letN (i) = X,; U Y,;. Wheneven € N(i), the label ofu will include the translation
between the host enumerationwfand the virtual enumeration of Specifically, for each € [logn| we
define the translation functiafy,; on pairs of integers, so that

Cui (0u(v), Yo(w)) = wu(w) whenevew € N (i) andw € N(i+ 1) N T,

andnull otherwise.

The label ofu will contain distances to all its neighbors (but not to its virtual neighbors). These distances
are stored as an array such that for eaeh[| X, UY,, ||, thej-th entry of this array is the distance fromto
¢u(j), thej-th element ofX,, U Y. This distance is encoded a®)dlog 3)-bit mantissa and (loglog A)-
bit exponent. Moreover, the label afwill contain the maps,,;, for eachi € [log n|; each(,; is represented
by an ordered set of triples:, y, z) such that(,;(x,y) = z # null. Finally, the label ofu will contain the
zooming sequence of. Specifically, we storep,(f.0), and eachf, ;1) is represented by its number in
the virtual enumeration of,,;; recall that by Claim 3.5(c¥(,,;+1) is indeed a virtual neighbor of,;. This
completes the definition of the node labels.

By the proof of Theorem 3.2, the cardinality of eadh,;, Y,; and Z,; is upper-bounded by some
K = [0(1/8)]°®@). Therefore each node has at mdstlogn neighbors, and each map; is repre-
sented by at mosk™ triples, each triple taking at mogtlog K + log |T,,| bits to store. SincéT,| <
O(K?)log(n)log(A), the label size is within the claimed bounds.

Let's show how to estimate distances from the labels. As in the proof of Theorem 3.2, fix a node pair
uv, denoted = d,,, letr = (1 + §)d and choose such thatr,; < r +d < T(u,i—1)- It follows that
T(vi—1) = T andry; < r+2d. We know that there exists a nodg within distance’d from v or v such that
wg IS @ common neighbor af andv; recall that distances fromyy to v andwv give us a desired estimate.
However, we know suchy, exists, but we do not know how to identify it: this is non-trivial since we do not
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have global node ids. In our context,ittentifya common neighbow of v andv means to findp,, (w) and
Pu(w).

Essentially, ifw, is close tov then we identify it by zeroing in via the sequencefpf’s, and similarly
if it is close tou. First we need a basic claim abofit;’s:

Claim 3.6 Forany;j <i— 1 we havef,; € Y,; and f,; € Y3,;.

Proof: Letw = f,; and note thatv € G; for I = |log(r,;/4)|. Sincer,; > r + d, by Claim 3.3 it follows
thatr,; /2 < ry; < 2ry; anddy, < d+r,;/4 < 1.5r,;. Thereforew € Y,,; by definition ofY,,;. Similarly,
we can show thaf,; € Y,;. ]

In particular, for any; < i — 1 nodesf,; and f,; are common neighbors ef andv. Moreover, we
canidentifythem sequentially using the translation mgpsand(,;. For instance, it is easy to identiff,o
since it is numbered the same in any host enumeration. Then, inductively, suppose that we have identified
somefy,;, j < i — 2 and we need to identify = f, ;;1). Then by Claim 3.5(c)f is a virtual neighbor
of f.;; note that at this point the only description pfavailable to our algorithm is its index in the virtual
enumeration off,;. Given this index, we can fing, ( f) via the translation mag,; and (by Claim 3.6) we
can findy, (f) via the translation mag,;.

Now, assuminguy is closer tov than tou, we will identify it using f = f,, ;1. (If wo is closer tou, we
can identify it similarly usingf(,, ;—1)-) Suppose thaty is a virtual neighbor off. Then we can just check
all virtual neighbors off that are common neighbors efandv. More precisely, we look at the translation
maps(,, ;1) and¢, ;—1) and check all entries of the for(, -); both maps have an entty, z) if and only
if node ) ¢(x) is both a virtual neighbor of, and a common neighbor afandv.

It remains to show thaty, is a virtual neighbor off. According to the proof of Theorem 3.2, we can
assume that either

(@) rv < 0d/6 andwy is the nearesk;-neighbor ofv, or

(b) 7y > dd/6 andwy € G; such that = |log dd].
In case (aywo € Ty by Claim 3.5a since, ;_1) > d > 24d; in case (b)wy € Ty by Claim 3.5(b) since
x = dd matches the conditions in the claim. This completes the proof of Theorem 3.4.

4 Low-stretch routing schemes, revisited

First we’ll use our result on distance labeling to obtaireally simple (1 + ¢)-stretch routing scheme for
doubling graphs, then we merge the techniques from the previous two sections to obtain routing schemes
for doubling graphs with super-polynomial aspect ratio. We also discuss extensimngit on metrics

Theorem 4.1 In the setting of Theorem 2.1, for ady € (0, 1) there exists g1 + J§)-stretch routing
scheme witl29(®)(¢ log n)-bit packet headers and routing tables @)°(®)(¢logn)(log A) bits, where
¢ = log(% log A). Such routing scheme can be efficiently computed.

Proof: For every node, letiD(u) be its uniqueflog n|-bit ID. Fix a 3/2-approximate distance labeling
scheme witl29(@) (log n) (log log A)-bit labels, which is guaranteed by Theorem 3.4; for each ndéeL,,
be the label ot in this scheme, and I€D(, -) be the non-contracting distance function on labels. Without
loss of generality assume that, containsiD(u). Each packet header consistslofandip(¢') wheret is
the target and’ is theintermediate targetThe routing table of node contains labeld., of some nodes
which we callneighborsof «; we’ll specify them later. For each suehwe also store the first nodg (v) on
some shortest path to

The routing algorithm is simple. To send a packet to ngdeodeuw initiates the intermediate target to
u. Suppose node creates or receives a packet with targahd intermediate target If ¢ = « then nodeu
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selects a neighbar such thatD(L,, L;) is minimal, makes the new intermediate target, and forwards the
packet tog, (v). Else, as we’ll see; is a neighbor of:, so node. just forwards the packet i@, (t').

Let's define the neighbors: for eaghe [log A] let F; be some2’-net; letr; = 2712/§ and Fj(u) =
By (rj) N F;. Elements ofF;(u) are calledj-level neighborof u; by Lemma 1.4 each node has at most
[O($)]9®) j-level neighbors for each

Now we can proceed with the proof of correctness. We claim that for anyypaif nodes, letting
d = dy, nodeu has a neighbov € B = B;(dd). Indeed, pickj such that2! < éd < 27+, Then on
one handB contains some node € F}, and on the other hang > 2d, soB C B,(r;), sov is aj-level
neighbor ofu, claim proved. From the claim and the labeling scheme it follows ih@t;, L,) < %M. So
when nodeu selects a new intermediate target for a packet with final tatrgetselects a neighbar within
distances dd from ¢.

Suppose an intermediate targéfor packetP has been set by the node Thent' € F(u) for some
Jj. We claim that’ € F};(v) for every nodev visited by P afteru and before reaching. Indeed, let's use
induction: ift" € F;(v) then P goes fromv to w = g,(t'), S0dyr < dy < 75, SOt" € Fj(w), claim
proved.

Now Claim 2.4(c) holds: each packet follows a shortest path to each intermediate target. To reach the
i-th intermediate target,> 1, the packet traverses a path of length at mst1 + 2 §)6'~!. Therefore the
total path length is at most,[1 + O(9)]. O

We note that the bounds in Theorem 2.1 are unsatisfactory for metrics with large aspect ratio, and an
extension that alleviates the dependencyMdior weighted graphs that contain near-shortest paths with small
hop-counts; this property is, intuitively, a natural property of a "good” network topology. For concreteness
we'll state this result for an illustrative special case; so as not to disrupt the flow, the general case and the
full proof are deferred to Appendix B.

Theorem 4.2 Suppose the aspect ratio is at m@stand for somey € (0, 1) any two nodes in the input
graphG are connected by él + §)-stretch path with at mostlog n hops, wherd: = (3)°(®) anda is the
doubling dimension. Then there exist§la+ ¢)-stretch routing scheme afl with O(k log® n)-bit routing
tables andD (k log? n)-bit packet headers. Such routing scheme can be efficiently computed.

Proof Sketch: We will combine the ideas of Theorem 3.4 and Theorem 2.1, and add some new tricks. In
particular, we'll use (i) the basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii) the
first-hop pointers, and (iv) host/virtual enumerations. We will use the rings, the zooming sequences, and the
enumerations as defined in Theorem 3.4. In fact, we'll just use all definitions from the proof Theorem 3.4,
for the same value of, including the sets ofX;- and Y;-neighbors. We also need a uniqlieg n|-bit
identifierip (u) for every nodeu.

The routing will havetwo modesOne is an elaboration of the routing in Theorem 2.1: we use interme-
diate targets that zoom in towards the true target. If at the currentnditke intermediate target is not set,
we select a new intermediate targeamong the neighbors ef, using the zooming sequeng¢eand other
data in the routing label of. To save space in the packet header, thisill be represented not by a global
id, but by its number in a virtual enumeration of sorfig Now suppose an intermediate targeis set, and
the packet is at node. If w is a neighbor oy and, moreovery canidentifythisw (i.e. findp,(w)), thenv
forwards the packet using the first-hop pointerto

Note that this routing algorithm might fail since it might not be possible to find a ‘'good’ new intermediate
target, or identify it at some intermediate nodeHowever, the algorithm is set up so that this can happen
onlyif there is a large gap betweeh, and the largest,; that lies beIow%dvt. Verifying this claim is the
crux of the proof of the theorem.

If the first routing mode fails, we enter tlecond routing modeand we stay in this mode till we are
done. By Lemma 3.1 there exists a bBllc F; of cardinality at least/2:79(®) such thatB C B, (67y;).
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Letw = hp be the node selected frofd in Theorem 3.2; without loss of generality say it is a center of
B. ltis easy to see that the ball’ = B, ;_1) contains target. The nodes inB will collectively store
the routes to all nodes iB’; specifically, each node iR will store full routes t020(2) nodes inB’ so that
exactly one node iB is responsible for each node 5. Moreover, the nodes iB will maintain a labeled
shortest-path tre@s rooted atw, such that givenp(¢) it is possible to route fromw to the nodev; that
stores a path té. Here it is crucial that we are free to choose the labelgfgand the mapping; from B’
to B any way we like. We will choose so that for a given link in the shortest-path tree it suffices to specify a
singlerangeof target ids for which a packet should take that link.

This is how the packet will reach First the nodev (which is a neighbor of:) is designated as the
intermediate target, and the packet is routeateia the first-hop pointers. From the packet is routed to
v; via the shortest-path tréEg. Then nodev, writes the full route tat into the packet header and sends
the packet ta. More preciselyp, will store a(1 + ¢)-approximate shortest path tavith £ logn hops (the
existence of such a path is guaranteed by the theorem statement). Each hop in this path can be encoded
by [log Dout] < [logn] bits, whereDy, is the out-degree, so the entire path can be stored using at most
k log® n bits.

This was the second routing mode; it is easy to see that it causes a detour of length ét(fmbgs}.
Moreover, we'll show that théotal path length from source to target is within the claimed stratehO(9)
even if we switch to the second mode in the middle of a path to some intermediate target. O

4.1 Routing schemes on metrics

Finally, we note that all our results on routing schemes on doubling graphs extendittg on metrics Here

we are given a metri€V, d), and we need to construct a routing scheme on some weighted directed graph
G = (V, E). The crucial point is that we are free to choose the (unweighted) set of dtigessentially,

it can be seen as an overlay networkdn The edge-weights are determined by the metric: for any edge
uv € E, the weight of this edge ig,,,. In addition to the maximal size of a routing table and the maximum
size of a routing label, the out-degreeBtbecomes another parameter to be optimized.

Extension to routing on metrics is almost trivial. In fact, in all our proofs we first construct a routing
scheme on a low-degree overlay network (which is, by definition, a routing scheme on a metric), and then
with some additional work adapt it to the underlying connectivity graph. The quantitative results are sum-
marized in Table 2; we omit the appropriate modifications (simplifications) of the proofs. Note that in this
setting Theorem 4.2 does not need any assumptions about low-stretch, low hop-couft paths.

FoOLLOW-UP WORK: Following the publication of the conference version of this paper, Abraham et
al. [7] provided a fine-tuned version of Theorem 4.2, where they completely eliminate the dependence on
aspect ratia); see Table 2 for quantitative results.

5 Searchable small-world networks

In this section we consider searchable small-world networksnetrics To the best of our knowledge, the
most general previous result in this direction is for metrics such that the growth rate of balls (defined as the
ratio | B, (2r)|/|By(r)]) is both upper- and lower-bounded by constants that are stictly greater than 1; let us
call such metricsJL-constrained This result can be easily achieved from Kleinberg’s original construction
for two-dimensional grids [30]. Here we extend small worlds to doubling metrics.

We will consider routing algorithms where the next hop is chosen among the current node’s contacts,
by looking only at distances to these contacts and distances from these contacts to the target. Recall from

13Recall that in the proof sketch of Theorem 4.2 negetores a low-stretch, low hop-count path fregto targett. For routing
schemes on metrics, we no longer need such a path; instead, we can create a direct linktérom
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\ out-degree routing table size, bits packet header size, bits

Chan et al. [14] (2)9@(ogA) ()9 (plogA) O(alog 1) (log A)
Theorem 2.1 (H)9@(logA)  (3)9@(plogA) same as above
Theorem 4.1 same as above ($)9(®)(¢log A)(logn) 20()(plogn)
Theorem 4.2 (HO@(logn)  (3)9(plogn)(loglogn) O(aglogn)
Follow-up work [7] | ($)9©@(logn)  (2)9(®)(log? n) [logn]

| doubling dimensiomy, aspect ratia\, and¢ = log(; log A)

Table 2:(1 + 9)-stretch routing schemes for doubling metrics.

Section 1 that we call such routing algorithstsongly local A very natural routing algorithm is thgreedy
algorithm: select the contact that is closest to the target.

As searchable small-worlds anetricshave not been previously studied explicitely, we need to give a
formal definition. For simplicity let us focus on the case when the routing algorithm is strongly local.

Definition 5.1 A small-world model on a metric(V, d) consists of the following two items:

¢ adistribution over directed graphs ovi (from which the graph of contacts is sampled) such that the
out-links (contacts) of a given nodeare chosen independently for different nodes

e astrongly local routing algorithm that, given the target, selects the next hop among the current node’s
contacts.

For a given graph of contacts, the routing algorithm recursively handlegjieriesof the form(u, ¢) where
u is the initial node and is the target.

Let us define theut-degreef a small-world model as the maximal possible out-degree of its graph of
contacts. For a given metric, we would like to balance two conflicting objectives: the out-degree and the
length of paths found by the routing algorithm.

We would like the distribution of contacts to have the following informal property: if from the point of
view of a given node; two nodesy andw are similar, then these two nodes should have a similar probability
of being chosen as contacts@afindeed, in our constructions the probability that neds chosen as a long-
range contact of a node depends only on the rank df,, among distances from to all other nodes, and
the ratiosu(v)/u(B.;), wherey is a doubling measure affd3,,; : 0 < j < [log A]} are balls around
with exponentially increasing radii. Here the doubling measure g@iantifies how dense is the metric in
the vicinity of v; intuitively, we need to oversample nodes that lie in very sparse neighborhoods.

Now we can describe our results. LAtbe the aspect ratio of the metric. While it is relatively straight-
forward to achieve out-degreé@(logn)(log A) andO(log A)-hop paths, it is quite non-trivial to handle the
case of super-polynomial aspect ratio. We obt@ifiog n)-hop paths even ifA is exponential im. In our
first result the out-degree is (still) proportionallte(A), suggesting that it is a natural lower bound since
we need some long-range contacts for each one ofltheA ) distance scales. However, our second result
breaks this barrier. Moreover, in Section 5.2 we argue that for UL-constrained metrics our small worlds
essentially coincide with those induced by Kleinbemgysup structuregrom [32].14

To break the above-mention€d(log A) barrier we need to use a non-greedy routing algorithm. Yet,
we can still make this algorithm strongly local, so that on each routing step we do not need to use any

The guarantees in [32] apply to UL-constrained metrics that are subsets ofésapacep > 1. However, the construction
itself is well-defined for any metric.
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extra information beyond the current node’s list of neighbors. To the best of our knowledge it is the first
non-greedy strongly local routing algorithm in the literature.

Let us state the main result of this section. Note that we upper-bound the actual (as opposed to expected)
hop counts, so that with high probability our upper bound is valid for all possible queries.

Theorem 5.2 Let« be the doubling dimension, and 1&t be the aspect ratio.

(a) Forany metric there is a small-world model with out-deg2€é&) (log ) (log A) and a greedy routing
algorithm such that with high probability all queries complete(xlogn) hops.

(b) For any metric there is a small-world model with out-deg2€&™ (log n)? (log A)'/2 (loglog A) and
a strongly local routing algorithm such that w.h.p. all queries complet®itogn) hops.

Proof Sketch: To be consistent with the earlier parts of the paper, let us use words 'contact’ and 'neighbor’
interchangeably. A relatively straightforward solution is to (ke A) rings of neighbors so that the radii

of the rings grow exponentially, and the neighbors are distributed with respect to the doubling measure; let
us call these neighbors thétype neighborsit is easy to make sure that the greedy algorithm reduces the
distance by at least a factor of two at each step, so any query will(tage\ ) steps to complete. However,
reducing the distance by a constant factor at each step does not suffice to guéréintee)-hop query

paths when the aspect ratlois large.

Let us denoteB,; = By(ry;), wherer,; = 7,(27%). In other words,B,; is the smallest ball around
nodeu that contains at Ieaslt/2" nodes, and,; is the radius of this ball. Letbe the target node, and let us
consider the annulB; ;_1) \ By;, indexed byi € [logn]. Instead of trying to reduce the distance to target
by a constant factor at each step, we will now focus on how quickly the routing algorithm gets us from one
such annulus to the next one. Specifically, to guara@@eg n)-hop query paths, we will need small-world
models with the following property:

(*) ifthe current nodeu in the routing path lies inside bal}, ;_;) but outside balB;;, then we getinside
ball B;; in at most a constant number of hops.

This property is non-trivial when the radiutg is much smaller than the distance betweesnd the target.

To prove part (a) we keep the Y-type neighbors. It turns out that we satisfy property (*) w.h.p. if we
throw in another collection of rings of neighbors where the neighbors are distributed with respect to the
counting measure; let us call these neighborsdttgpe neighborsSpecifically, we get fromu into the ball
By; using onlytwo hops; the one intermediate hop leads frarto some node within distaneg,; /4 from ¢.

To prove part (b), however, using all-neighbors is not an option since there are too many of them.
Instead, we will need tprunethem. From part (a) it will follow that after we get within distandg, /4
from ¢, the next hop gets us insidg,;. However, might not have a neighbor that is sufficiently close.to
To handle this case, we will need to use a non-greedy routing choice, specifically:

(**) if the current nodeu has no contacts within distandg, /4 from the target nodé then we choose the
contactv that is farthest from: subject to the constraint,, < d,;.

Intuitively, if we cannot make a sufficiently good progress towards the target, this is because the current
nodewu happens to be in a particularly 'bad’ neighborhood. We want the next hop to take us away from this
'bad’ neighborhood, and place us into a 'good’ neighborhood. This is why we want the next hop to take us
to some node which is far away from node. Furthermore, we want tprovethat we necessarily land in a
'good’ neighborhood. To prove this we must use the 'badness’(@ince otherwise nodeis no better than
nodev as far as we are concerned). Therefore we do not want timgéar from nodeu, which is expressed

by the constraintl,, < d;.
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To make (**) work, we introduce yet another family of neighbors, which we callzktgpe neighbors
Our argument proceeds as follows. If nodés a contact of the current node let us say that is goodif
the ratiod,, /d.. is large enough, yet smaller than 1. We will show that if the current noidein a 'bad’
neighborhood, then any good contacis in a 'good’ one. Moreover, (**) will necessarily find a 'good’
contact ifu has one. So our job is to make sure that nades at least one 'good’ contact. And indeed with
high probability node. will have at least one 'good’ contact among the Z-type neighbors O

5.1 Full proof of Theorem 5.2

Let us fill in the details. For simplicity let us assume that in the input metric all distances are distinct. Recall
that B,; = By(74i), Wherer,; = r,(27%) is the radius of the smallest ball aroundhat contains at least

n/2' nodes. Fix an absolute constanto be specified later. Recall thatis the doubling dimension; let

1 be the29(@)-doubling measure (recall that such measure exists by Theorem 1.3). Fof eafibgn]

select a node independently and uniformly at random from the Bgll Repeat this:logn times, where

c is a sufficiently large constant to make the Chernoff Bounds work out (see Footnote 15 below), and let
X be the set of selected nodes. ¥t = UX;; these are th&-type neighboref ». Note that w.h.p.

| X.| < O(log? n).

Proof of part (a): Let us select th& -type neighbors of a given nodeas follows. For each € [log A]
select a node independently from the bll= B, (27) according to the probability distribution(-) /u( B);
repeat thig2°* log n) times, and let,; be the set of selected nodes. gt= UY,;; these are th&-type
neighborsof u. Define the set of neighbors afas X, U Y,,. Note that the out-degree afis within the
claimed bound; in particular, we upper-boud, | using Lemma 1.2.

We need to prove that property (*) holds. Suppoiethe target and is the current node. Let us choose
i such that nodex lies in the annulus3(; ;1 \ By;. Let us denotel = d,; andj = [log(1.25d)]. Note
that the sel’,; contains a nodev that is within distancel/4 from targett.'®> Therefore the greedy routing
algorithm will choose such node for the next hop.

If r; > d/4 then we are done. Now supposg < d/4. By our choice ofi we haver( ;) > d. By
Claim 3.3 It follows thatr(,, ;1) > %d, S0B;; C Bi(d/4) C By, ;—1)- Since ballB,; contains at least a
half of the nodes of the balB,, ;_), it follows that with high probability the seX,, ;_;) contains a node
in By;, and we are done. O

Proof of part (b). In the remainder of this subsection we will prove part (b) of the theorem. As we
discussed in the proof sketch, we will introduce a new family of contacts (c@Zigge neighbors and
define the pruned version of the Y-type neighbors. .

For a given node, let us select the contacts as follows. Let us denote /Tog A andp; = 2(1+1/2)7,
Let us consider the annulB,(p;) \ Bu.(p;-1), indexed by;j. For eachj such thatp; < A let us pick a
nodez,; uniformly at random from thg-th such annulus, provided that it is non-empty; elsezlgtbe the
closest node ta that lies outside3,, (p;), ties broken arbitrarily. LeZ,, = U; {z,;}; these are th&-type
neighborsof u.

For eachi € [logn] and each (signed) integgisuch that

|j| < (3$ + 3)(10g IOg A) andr(u,i—i—l) < Tuyi - 2j < T(uyi—1)s

BMore precisely, by Chernoff Bounds for large enough constamith high probability this happens for afk, t) pairs simulta-
neously. In the rest of the proof we will omit these straightforward applications of Chernoff Bounds.
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let us select a node independently from the @l B, (r,; - 27) according to the distributiop(-) /uu(B).
Repeat thig2°* logn) times and let{,, ; ;) be the set of selected nodes. bgt= U;; Y, ; ;); these are the
Y-typeneighbors ofu. Define the set of neighbors efas X, U Y, U Z,,.

Let us check that the out-degree is small enough. Indeed, there are abfbastn) X-type neighbors.
Each sefv], ; ; contains at mos2®(®)(logn) nodes. Since for these sets there are at rflogtn) valid
indicesi and at mosO(z loglog A) valid indicesj, the number of Y-type neighbors is below the claimed
upper bound. Finally, for the Z-type neighbors it suffices to note ghat A implies;j < O(z)(loglog A).

The routing algorithm is simple. Supposés the current node andis the target. Ifu has a contact
within distanced,;/4 from t then we greedily choose the contact that is closest tBlse we do the non-
greedy step (**).

This completes the specification of our small-world model; now we need to prove that our routing
algorithm satisfies property (*). Supposés the target and is the current node. Let us choossuch that
nodeu lies in the annulus3, ;) \ By;. We will show that we get inside the bdl;; in at most three hops.

Indeed, letl = d,; and note that as proved in part (a), if we get within distaticefrom targett then in
at most one more hop we are done. Let us consider the hard case: supposedoasdenot have a contact
in B;(d/4). Let us choose an integesuch that,; < d <, ;_y). Itis easy to see that

ru - 87T < 1.25d < gy 1-1y/8° T (2)

Indeed, if the first inequality fails then fof = |log(d/r.)| some node fronY,; ;) lies in By(d/4),
contradicting the assumption that nodeloes not have contacts i, (d/4). If the second inequality fails,
then similar contradiction arises with the $€f, ;_; ).

Now let us choosg such thap; < d < p;41 and consider = z,;. It follows thatp;_; < d,. < dand

d/du: < pjs1/pj—1 = (pj—1)>/* < A3/* = 8"
Therefore the non-greedy step (**) will choose some contacf « such that
d/8% < dy < d. 3)
In particular, by (2) and (3) it follows that
dry; < duw < T(u,1-1)/4- (4)

Now that we are aty we will be able to make progress towardsTo ensure property (*), the next hop
should get us fromw to within distanced,,;/4 from ¢. Sinced,,; > d/4 by our assumption, it suffices to
get inside the balB;(d/16). (Note that if the routing algorithm is allowed to remember the previous move,
then getting insideB,, (d/4) is sufficient, too.) We will achieve the desired progress using some neighbor in
Y{(w,,j) for the appropriately chosen

Claim5.3 duw — Tyl STl < duw + Tul-

Proof: The second inequality follows since the ball,(d.., + r.) contains the balB,; and therefore
has cardinality at leasi/2'. Suppose the first inequality fails. Then the balts; and B,; are disjoint;
since both balls lie insideB, (d.., + r.:), the latter ball has cardinality at leasy2!~!. It follows that
T(u,i-1) < duw + 1w HOwever, using (4) we havé,,, + 1y < 2duyw + 1a < 7y, 1—1), CONtradiction. O

Combining Claim 5.3 and (4), it follows that,;/d.., < (2,2). Let us denote = d,,; + d/16. Then

r < 1.07d+ dyw < dyy (1.07-8% + 1) < 2351y, (5)
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In (5) the first inequality follows simply becaugk; < d + d,.,, and the second inequality holds by (3).
Let us choosg such thak’—! < r/r,; < 27. Then by (5) we have < 3z + 2, and by definition of-
we haveB,(d/16) C B, (r.; - 27). The radii of these two balls are within a constant factor because

r = O(ry-27) by definition of
= 0O(d) by definition ofr, sinced,; < d + dy. < 2d.

Therefore the seX(,,; ;) is well-defined, and it follows that with high probability the bad)(d/16) contains
a node fromy(,,; ;). This completes the proof of part (b) of the theorem.

5.2 Comparison with Kleinberg’s small worlds

Let us argue that our small-world models generalize one of the Kleinberg's small worlds. Specifically,
we consider thegroup structuredrom [32] applied to balls in a metric (it was one of the two original
applications described in [32]). This small-world model, calbtRUCTURES can be defined as follows.
For any two nodesu, v), let z,,, be the smallest cardinality of a ball containing battandv. For each
nodeu, define a probability distributiom,, on V' (the set of all nodes) by, (v) = ¢1 /., Wherec; is the
suitable normalization factor. Each noddasO (log? n) neighbors chosen independently from distribution
.. The routing algorithm is greedy.

On UL-constrained metrics our two small-world models essentially coincide suiHUCTURES

Theorem 5.4 For UL-constrained metrics, both small-world models in Theorem 5.2 share the following
properties withSTRUCTURES

(a) with high probability, any target is found i@(log n) steps from any starting node.
(b) the routing algorithm is greedy.

(c) each node haks = O(log? n) neighbors.

(d) Pr[vis a neighbor ofu] = ©(logn)/z.,, for any nodegu, v).18

Proof: Part (a) is trivial because any UL-constrained metric has a polynomially bounded aspect ratio. For
part (b) note that the routing algorithm in Theorem 5.2a is greedy by definition, and in Theorem 5.2b the
non-greedy step is takemlyif there is no neighbor that would reduce the distance to the target by the factor
of 4. Itis easy to show that if the underlying metric is UL-constrained then th& setY,, will contain such
a neighbor, so in Theorem 5.2b the routing algorithm is greedy as well and, moreover, the Z-type neighbors
are never used.

Part (c) and (d) follow from the following observations:

() On a UL-constrained metric, the aspect ratio is poly-logjrand the counting measure is doubling.
(if) For any two nodesgu, v) in a UL-constrained metrid,B,,(d.,)| is within a constant factor of,,,,.
(iii) Ina UL-constrained metric, for any nodeand anyi € log[n] there can be at most a constant number
of balls B, (27), j € [log A] that are sandwiched betweél; andB(y,;+1), whereB,; is the smallest
ball aroundu that contains at least/2* nodes.

By (iii), in Theorem 5.2b for every node and each < [logn| there is at most a constant number of
non-empty set3’,;; (and obviously, there is at least one such set). Part (c) follows immediately.

In both parts of Theorem 5.2, for each nodeve sample©(logn) neighbors (namely, the X-type
neighbors) uniformly at random from each of the bdll3,;, i € [logn]}. Here a given node is selected
with probability ©(logn)/| B, (dw)|, which by (i) is©(logn) /zyy.

Apart from that, we sampl®(logn) neighbors (namely, the Y-type neighbors) from each of the balls
{B,(2%), j € [log A]}. By (ii) we sample them uniformly at random; by (iii) this boosts the probability of

18For Theorem 5.2b we ignore Z-type neighbors since it turns out that on UL-constrained metrics they never get used.
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selecting a given node by at most a constant factor. So again, agigeselected as & -type neighbor of
u with probability© (log n) /s . O

5.3 Comparison with the single-link-per-node model

Let us briefly comment on an alternative setting where we are given a graph of local contacts, and we
add exactly one long-range contact per node. This has been the original Kleinberg’s model [30] (for two-
dimensional grids). Recently, following the publication of the conference version of this paper, such setting
has been considered for graphs that induce metrics of low grid dimension [16, 19], graphs of bounded
treewidth [18], and graphs that exclude a fixed minor [8].

We note in passing that our more straightforward result on small worlds (the one that only uses the
Y-type neighbors) trivially extends to this setting:

Theorem 5.5 Consider a graphG such that its shortest paths mettig: has doubling dimension. There

is a randomized algorithm that assigns to every node exactly one long-range contact so that in the resulting
small-world model oni; the greedy algorithm completes each query2ff® (log? A) hops with high
probability and in expectation.

Proof: We will use, implicitly, (log A) rings of neighbors so that the radii of the rings grow exponentially,
and the neighbors are distributed with respect to the doubling measure. Specifically, for eachwede
choose u.a.r. an integgr € [log A], and then we select the one long-range contact @fom the ball
B = B,(2/) according to the probability distributign(-) /1.( B), wherey is a doubling measure aft;.

Suppose is the current node andis the target. Then with probability = (2°(%) log A)_l nodeu
has a long-range contact within distan¢g /2 from ¢t. At every step the greedy algorithm is guaranteed
some progress via the local contacts. Eventually it will find a suitable long-range contact and halve the
distance to target. This will tak@ /p) steps in expectation, and, by Chernoff Boun@$1/p) steps with
high probability. Therefore the query will complete(p log A) steps in expectation, and@(p—! log A)
steps with high probability. O

Recall that Theorem 5.2 explored the interesting trade-off between the out-degree and the hop-count.
Here, in Theorem 5.5, in order to make progress, a success event at any one node suffices; so if we allow
larger out-degree, then the product of hop-count and out-degree stays constant. This seems a good way to
capture the above-mentioned tradeoff. Unfortunately, it does not seem to work in general. For instance, if
we adapt Theorem 5.2(a) or Theorem 5.2(b) to the current setting then in order to make progress we need
success events at two (resp. threepsecutivanodes. This results in poor probability of making progress
at a given node, and, accordingly, in an unreasonably poor expected hop-count, as compared to a much less
sophisticated Theorem 5.5. These considerations suggest that the setting with one long-range contact per
node might not quite capture the richer setting of polylog out-degree.

6 Conclusions and open questions

We consider four related node-labeling problems: low-stretch routing schemes, distance labeling, searchable
small worlds, and triangulation-based distance estimation. Our results on these problems are unified by
a common technique called 'rings of neighbors’; they are further intertwined as shown in Figure 1 (see
Section 1). For each of the four problems, we focus on doubling graphs and improve over the existing
constructions. In particular, we obtain approximate distance labeling schemes that are optimal up to constant
factors for doubling metrics with super-polynomial aspect rafidVe also extend Kleinberg’s small world

An optimal construction for polynomially-bounded aspect ratio has appeared in Talwar [52].
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model to doubling metrics, and obtain simpler proofs for the main result in Chan et al. [14] (on routing
schemes) and for a result in Mendel and Har-Peled [44] on distance labeling.

Let us suggest several directions in which our results can be extended.

First, for routing schemes on graphs and for searchable small-world networks it is desirable to further
alleviate the dependency on the aspect rdtioe.g. by replacing thé€log A) factor by (logn)(loglog A)
like we did for distance labeling schemes and routing schemes on metrics. A more ambitious task is to
obtain poly-log(n) upper bounds that do not depéndltogether. After the conference version of this paper
has appeared, such results for routing schemes have been obtained by Abraham et al. [7].

Second, recall that our result df, J)-triangulation achieves ordep,, s(logn). However, the lower
bound (1) on distance labeling (see Section 3), which is the only lower bound for triangulation that we have,
does not preclude triangulations of ordey, 5(1) for polynomially bounded aspect ratio, and triangulations
of order O, s(loglogn) otherwise. Can we provide doubling metrics with a triangulation-specific lower
bound ofQ2(log n), or, alternatively, construct triangulations of sub-logarithmic order? Intuitively, the latter
would be very surprising. Indeed, consider balls around a given nod&en there aré)(logn) exponen-
tially increasing size scales, and at least as many exponentially increasing distance scales. If the size scales
are roughly aligned with the distance scales, then, intuitively, a labeliafany reasonable triangulation
should include distances to at least one node in each of these scales.

Third, we would like extend our results on all four problemslecomposable metri¢87], a wide class
of metrics that includes doubling metrics as well as the shortest-path metrics of graphs excluding a fixed
minor, e.g. shortest-path metrics of planar graphs. This direction seems promising since similar extensions
(from doubling metrics to decomposable metrics) have been obtained in [37, 9] in the context of metric
embeddings. Also, recent results of Abraham et al. [6, 8] construct low-stretch routing schemes, distance
labeling schemes, and small-world networks for graphs excluding a fixed minor.

Finally, rings of neighbors can be used in a distributed system as a layer that supports various appli-
cations. In particular, this is the framework used theoretically in Slivkins [50] for distributed approaches
to metric embeddings and distance estimation, and practicaMeiridian (Wong et al. [57]), a system for
nearest-neighbor and multi-range queries in a peer-to-peer network. While this framework has already lead
to significant results, rings of neighbors that we can define theoretically provide a much better coverage
than the ones that we know how to construct and maintain in a distributed fashion. Bridging this gap is an
interesting open question.
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Appendix A: Existence of (e, u)-packings

We prove Lemma 3.1 on the existence (ef 1)-packings which is implicit (but never articulated) in
Section 5 of [50]. We state it in a slightly stronger form that will be used in the proof of Theorem 4.2.

Lemma A.1 Consider a finite metric of doubling dimensian equipped with a probability measure Let
r.(€) be the radius of the smallest ball aroundthat has measure. Then for anye > 0 there exists an
(e, 11)-packing a family F of disjoint balls of measure at leasf2°(®) each, such that for any nodethere
exists a ballB, (r) € F such thatd,,, + r < 6r,(¢). Moreover, sucl¥ can be efficiently computed.

Proof: Letr, = r,(¢). For a given node:, say a ballB,(r) is u-zoomingif it is a subset ofB,,(3r,),
has measure at least16“, andB, (4r) has measure at most We claim that for every node either there
exists au-zooming ball, or there exists a notlg € B, (2r,) of measure at least

Suppose neither of the two exists. ket r,. By the doubling property of the metric (see Lemma 1.1),
B, (r) can be covered by6“ balls of radius-/8. At least one of these balls, s&,(r/8), has measure at
leaste/16%; since without loss of generalit, (r/8) overlaps withB,(r), it follows thatd,, < 3r and
B,(r/2) C By(2r). Since there is na-zooming ball, in particular the balB,(r/8) is notu-zooming, so
B, (r/2) has measure at least

The argument applied t&,, () can now be applied t®,(r/2) and so forth. Iterating this argument
times, we come up with a nodesuch thatd,, < §r(2 —27) and B, (r/2%) has cardinality at least For
large enough, namely fori such thatr/2* < 1, this ball consists of only one node, which therefore has
measure at least Contradiction; claim proved.

In accordance with the above claim, for every given nadee defineB,, to be au-zooming ball if such
ball exists, or else we defing, = {b,} whereb,, is a node inB,(2r,) that has measure at leastNote that
a suitableB,, can be efficiently computed by simply checking each ball whether:itiz®oming, and then
checking each node iB, (2r,).

Let 7 be a maximal collection of disjoint ball®,. Note that such¥ can be efficiently computed by
consecutively going through all balB,, and including a give,, in F if it is disjoint with other balls that
are already iF. We will show thatF is the desirede, 1)-packing. It suffices to prove the following claim:
for each node some ballB, € F lies within B, (6r).

Suppose that for a giventhe claim is false. Since by definition ofiazooming ballB, C B,(3r,),
it follows that B, ¢ F. SinceF is maximal, B, overlaps with some balB, € F. If B, = {b,} then it
trivially lies in B, (3r,), contradiction. Sd3,, is au-zooming ball; sayw is its center, and is its radius. By
definition of au-zooming ball,B,,(4r) has measure at mostIf 4r > d,,, + r,, then ballB,, (4r) contains
ball B,(r,); as the latter ball has measure at legsthe two balls coincide, and thus, lies in B,(r,),
contradiction. Thereforér < d,., + .

Recall that ballB,, overlaps with ballB,; let x be a node that lies in both balls. SinBe C B, (3r,),
applying triangle inequality to the triplév, =, w) we getd,,, < 3r, + r. Plugging this into the previous
inequality, we obtai8r < 4r,. It follows thatr + d,,, < 6r,. Consequently, balB, = B, (r) lies in the
ball B, (6r,), contradiction. Claim proved. O

The above proof actually extends to complete infinite metrics, but we do not need it here.
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Appendix B: Proof of Theorem 4.2 on routing schemes

We will prove Theorem 4.2 in the following more general form:

Theorem B.1 Suppose for somee (0, 1) any two nodes in the input graght are connected by él + 6)-
stretch path with at mosVs; hops. Letn be the doubling dimension, I1& be the aspect ratio, and lddq;
be the out-degree @¥. Then there exists @ + ¢§)-stretch routing scheme a# with

- O(a¢logn) + Nj(log Doy)-bit packet headers and

- (19 (¢ + Ny)(logn)(log Dour)-bit routing tables,
where¢p = log(% log A). Such routing scheme can be efficiently computed.

We will combine the ideas of Theorem 3.4 and Theorem 2.1 with some new tricks. We will use (i) the
basic rings of neighbors, (ii) zooming sequences and intermediate targets, (iii) the first-hop pointers, and (iv)
host/virtual enumerations. Our basic setup is from the proof of Theorem 3.4. For simplicity let's assume
d<1/8andletd’ =46/(1—19).

NOTATION. We borrow a lot of definitions from the previous proofs:

e From Theorem 3.2, we borrow, firstly, radij; and ballsB,,;; secondly(2~¢, 11)-packingsF; and sets
X of X;-neighbors; and thirdly.),j-netsgj and setd,; of Y;-neighbors.

e From Theorem 3.4, we borrow the zooming sequerfges {f,; : i € [logn]}, the setd’, of virtual
neighbors; host enumeratiogs,(-), virtual enumerationg,(-), and translation functions,;. For
convenience, we seft,(v) = null whenevew is not a virtual neighbor of..

e From Theorem 2.1 we borrow the first-hop pointers.

We use(2~%, u)-packingsF; in a somewhat stronger form provided by Lemma A.1; for etk F;, let
h = hp be anode and = rp be a radius such tha = By, (r) and6r,(27%) > d,, + r. We need to fix
h because3 can have multiple centers, i.e. nodesuch thatB = B, (r) for somer, whereas Lemma A.1
guarantees this inequality only for one of them. We redefine th&(gebf X;-neighbors ofu as follows as
the set of all nodes = hp such thatB € F; andr(, ;_1) > dun + 75-

We introduce some new notation. For each ngdsachi € [logn| and eacly € [log A], we define:

- ID(t) as a unique globdllog n]-bit identifier for¢;

- x4 as the nearest;-neighbor oft;

- ¢ as the nearest;-neighbor oft;

- Jy; as the set of all integers betweging($r;) | and[log(6r4)];

- Sy as the set of all;; such thatj € J;.

All nodesz,; and all nodes in all setS,,; are calledriendsof w.

DATA STRUCTURES Routing labels and routing tables will contain distances between some pairs of nodes.
All these distances as stored a®dog %)-bit mantissa antbg log A-bit exponent. It will be easy to see that
this many bits suffice for our purposes; we omit the details and treat the stored distances as exact distances.
Therouting label of targett containsiD(¢) and the information about the zooming sequence and the
friends oft, specifically:
- setsJy, for all 4.
- the host enumeration offor f;q, x;0 and all nodes irb;.
- for eachi > 1, the virtual enumeration of, ;1) for fi;, z;; and all nodes irby;.
- the distances fromto all f;;, all z;; and all nodes irby;.
In the routing label, the info about all nod¢s andz,; is stored as an array indexed hysimilarly, the info
about all nodeg;; € Sy; is stored as an array indexed pyThe global IDs are not used.
Therouting tableof each node: includes:
- its label, radiir,,; for all 7, and distances to all its neighbors (but not to its virtual neighbors),
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- translation maps,;, for all i € [logn].
- the first-hop pointer fromu to each neighbor of, which we can store using onlyfog D] bits.
Nodew does not know the global IDs of its neighbors; they are indexed accordipg.to

USING THE DATA STRUCTURES Suppose is the target and is the current node. Say nodeis a(u, i, j)-
landmarkif the following three conditions hold:

(c1) wis a neighbor of: and a virtual neighbor of ; ;_1)-

(C2) Ifj = oo thenw = z4; € Xy;; elsej € Jy; andw = Ytj € Y-

(c3) foralll < i — 1 nodefy is a neighbor of;
Say nodew is (u, 1, j)-goodif conditions (c1)-(c3) hold and, moreover,

(C4) dyt < 6'duy aNA6ry; < §'dyy andj > |log 125 dua ).

(C5) rui < 28duw < 7(y,i—1) for somes such thatl — ' < 3 < 1/(1 - 9).
Say a node isi-good if it is (u, i, j)-good for some paifi, j). Note that by condition (c2) &u, i, j)-
landmark is unique if it exists, whereas there could be multipgpod nodes.

Here is the meaning behind these definitions. A current nogethe routing can select somegood
nodew as an intermediate target; the definition is tailored so that, on one hangpad node is a good
intermediate target, and on the other hand, we could show that such nodes exist. Then the packet will be
routed along some initial segment of a shortegt-path. In particular, each nodein this segment will
know where to forward the packet; essentially, it will be due to the factithiata (v, i, j)-landmark.

First we show thatu, i, j)-landmarks andi-good nodes exist, then we show how to identify them. The
following claim is an elaboration of the arguments in the proof of Theorem 3.4.

Claim B.2 Fix any nodes: andt, and letd = d,;.

(@) Ifry > 3d for somel then f,; is aY;-neighbor ofu.

(b) if6d/6 < rui < 2d < 7, ;1) for somei, then there exists a-good node.
Proof: (a)Letd = d,;. Note thatw = f;; € G;,j = |log(ru/4)], and by Claim 3.3 we have,; —ry| < d.
By definition of Y;-neighbors, we need to check two things: thgf < 12r,;/12 and that € .J,;. Firstly,

dyt < Ttl/4 < (Tul + d)/4 < Tul/21 SOdyy < d~+ dy < 1.5y

Secondly,j € J,, follows becausey; > ry —d > ry(1—2) > 6ry.
(b) We will produce a(u, 7, j)-landmarkw such thatd,,; < dd. For suchw by triangle inequality we
have

so it is easy to see that conditions (c4) and (c5) holdansl«-good.
If ry; < 0d/6then letw = xy; else letw = 5, j = [logdd]. In either cased,; < dd. We claim that
wis a(u, 1, j)-landmark. Since condition (c3) holds by part (a), we just need to check (c1) and (c2).
Letz = dd and f = f; ;,_1). There are two cases. Firstly, suppase< z/6 andw = z¢;. By
definition of X;-neighbors for some radiuswe haveB,,(r) € F; andd,,; + r < 6ry; < z. Therefore

duw+rgd+dwt+r§d+$<2d§7'(u,i—1)v

sow € Xy;. SINCer(; j_1) = 7(y,i—1) — d > d > 12r4;, by Claim 3.5aw is a virtual neighbor off.
Now suppose; > x/6. Note thaty; < r,; +d < 3d, sox € [%; ri674]. Thenw = y; € G N By(2)

satisfies all conditions in Claim 3.5b, hence is a virtual neighbaf.d¥inally, » is aY;-neighbor ofu since
12r4/8 > 2d > d + dyt > dyy @andy = |logz| > |log dry;/4]. O

Claim B.3 Given the routing table of. and the routing label of, one can efficiently:
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(@) check whether a-good nodew exists; if so, findp, (w) and (i, j) such thatw is (u, i, j)-good.
(b) check whether theu, i, j)-landmarkw exists, for giverti, j), and findy,, (w) if it does.
Proof: Consider the following algorithm. First, read,( ;o) from the routing table of.. Then consecu-
tively for eachi from 1 to [logn], let f = f(; ;_1), do the following:
1. Note that by construction condition (c3) holds and we knowy).
2. forw = z,; and then consecutively for eaeh= y,;, j € Jy; in the order of decreasing
a. checkly; (wu(f), ¥ r(w)). Ifitis not null then it is equal tap, (w), and condition (c1) holds.
b. check condition (c2). If it holds, then nodeis (u, i, 7)-identifiable.
c. if (cl) and (c2) hold, we can check (c4) and (c5). If they hold, too, then noide:-good.
3. Checkly; (¢u(f), ¥ ¢(fu)). Ifitis null then exit. If it is notnull then it is equal tap,, (f1;).
For part (a) we exit if in step 2b we find(a, ¢, j)-identifiable node; for part (b) we exit if in step 2c we find
au-good node. it is easy to see that if@ i, j)-identifiable (respu-good) node exists, then our algorithm
finds and identifies it. O

FIRST ROUTING MODE The routing will have twanodes M, and M. Routing starts inM4, then may
switch toM.; if it does, it does not go back td1;. In what follows, the target node is denotedtby

The first routing mode is an elaboration of the routing algorithm in the proof of Theorem 2.1. In this
mode the packet is routed to artermediate targeto, until it reachesv or t, or switches toMs, or a new
intermediate target is chosen. If the current intermediate tardets been chosen at nodgthen the packet
header contains the routing label#fthe distanceDest = d.., and theintermediate target idwhich is a
pair (i, j) such thatw is (u, 4, j)-good.

Suppose node receives a packet. Firgtchecks whether it is the target: i (¢) = 1D(u) then we are
done. Ifu is not the target, there are two cases, depending on whether the intermediate targetlid is

e If the intermediate target id isull, u checks whether a-good nodev exists; if sou finds ¢, (w) and
a pair (i, j) such thatw is (u, i, 7)-good (see Claim B.3a). ki-good nodes do not exist, the routing
switches toM,. Else,u choosesw as the next intermediate target, sélsst = d,.,, and sets the
intermediate target id t6i, 7).

e If the intermediate target id i€, j), thenu checks whether théu, i, j)-landmark nodev exists (see
Claim B.3b), findsp, (w) it if it does, or switches to\, if it doesn't.

Suppose the first-hop pointer fromto w denotes edgev, for some node. If d,,, — dy, < 20’ Deg;, OF if v
is w itself, thenu sets the intermediate target idrtall. Finally, « forwards the packet to. This completes
the description of the first routing mode. For convenience assume that initially the sender receives the packet
(from itself) such the intermediate target idngll.

We claim that the routing inM; is sufficiently nice, namely that the intermediate targets zoom in
towardst, and the packet follows shortest paths from one intermediate target to another. We will need a
simple application of triangle inequality: for any nodesw andt such thatd,; < §’d we have

(1 - 5/) duw S duw - dwt S dut S duw + dwt S (1 + 5/) duw'

ClaimB.4 Letug,us, ..., ur_1 be the nodes where the new intermediate target id has been set; bet
the last node that the packet has reachedMhy. Then for a fixed < k& we have:

(a) the indermediate target chosen at; is at least2 ; times closer td thenu;.

(b) u; is at least: 3 times closer ta thenu;_;.

(c) the packet trajectory from; to u;,; is a segment of a shorte@i;, w;)-path .
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Proof: (a) Letu = u;. Thenw is u-good, sal,,; < §'d,,, and
dut > (1= 8y > (1 — 6")dupt /8 = (1 — 26)dupt /S > 3ddus /45

(b) Letv = u;11 and suppose # w. Letx be the node visited by the packet right befeteThen by
definition of M; nodew lies on a shortestw-path, and at node we hadd,, = dyw — dpy < 20" Desy
whereDest = dy.. Therefore,

dyt < dpw + dut < 38 dyw < 38 dys/(1—0") = 38dys/(1 — 26) < 40dy;.

(c) The proofis similar to that of Claim 2.4, but somewhat more complicated singes not necessarily
equal tow. Letu = u; andv = wu,41. Let p(z) be the path traversed by the packet from nede v; let
pr(z) be the metric length of this path. We need to show that.) = dy, = duw — dyw-

We claim that for every node € p(u) we havepr (z) = dyy = dgw — dypw- We will use induction on
p(x). Consider an edgey € p(u) and assumgy (y) = dyy = dyw — dyw- By definition of M nodey lies
on a shortestw-path, sad,, + dyw = dg.. It follows that

dmv + de > dmw = dmy + dyw = dmy + dyv + de > dmv + dea
SOPL(w) = dmy + pL(y) = dmy + dyv = dgy = dgw — dpw- o

SWITCHING BETWEEN THE MODES It is crucial that the routing switches fro; to M only if for the
current node a certain condition (Lemma B.5) holds. We will see later that under this con#ltiomork
efficiently. The forthcoming Lemma B.5 is really the crux of the proof of Theorem 4.2.

Lemma B.5 Suppose the routing switches.Ad, at nodev. Then6r,;/J < %dvt < 7(y,i—1) fOr somei.
Proof: Suppose such does not exist. Let, be the last node that receives the packetmfh with null
intermediate target id. i = v then fori such thatr,; < 2du: < 7(,;-1) We must havéry; > 35dy, SO
by Claim B.2b there exists @&good node, contradiction. Therefate# v. It follows that:

e the routing did not switch toU, atu, sou has set the intermediate target id to a gairj) such that
there exists du, i, j)-good nodew.

e nodew received the packet with a non-null intermediate target id (equél,tf)), so it must be the
case thatl,,, — d,, > 26'd..,, wherez is the node visited by the packet immediately before

Since the routing switched t81- at v, by the specification oM there is no(v, i, j)-landmark node.
For the sake of contradiction, We will show that nadés a (v, i, j)-landmark; this will complete the proof
of the Lemma.

We need to check conditions (c1-c3) in the definition afvai, j)-landmark. For condition (c3), we
claim that for eacth < i —1 we havefy; € Y,;. Indeed, sincev is (u, i, j)-good, it follows thatl s < ¢’ dy,
andr,; > 2d,,(1 — ¢'). By Claim B.4c node» lies on a shortesiw-path, sad,, + dyy = dyw- Moreover,
rol > T — dyy Dy Claim 3.3. Putting this all together and lettifgg= %, we have:

Tul Z 2duw(1 - 5/) Z ﬁduw(l + 5/) Z ﬁ(duw + dwt) = ﬁ(duv + de + dwt)
Tol 2> Tul — dyy > Tl — ﬁduv > ﬁ(de + dwt) > ﬁdvta

so the claim follows by Claim B.2a.
Sincew is (u, 1, j)-good, it is a virtual neighbor of, ;). Therefore it remains to check condition
(c2). To this end, we claim that € X; if j = oo, andw € Y,,; otherwise.

32



If 7 = oo then by definition of(u, ¢, j)-landmarksw = z;; € X,;, so by definition ofX;-neighbors for
somer we haveB,,(r) € F; andr(, ;1) > dyw + 7. It follows that

T(v,i—1) > T(u,i—1) — dup 2 dyw + 7 — dyy = dyw + 7,

sow is aX;-neighbor ofv, too.

If j < oo then by definition of(«, ¢, j)-landmarks it must be the case that= y,; € G;. We need to
show thatw € Y, i.e. that (a)Yl,, < 12r,;/d and (b)j > |07.:/4].

Recall thaty < 1/8. Since%dvt < r(v,i—1) @nd we assumed that then the statement of the Lemma
does not exist, it must be the case that; > %cidvt. Therefore:

dvt

> vw T dwt > 25/duw - 5/duw = 5/duw > dwta
de <

d
dyt + dupt < 2y < 2(3/4)(6/8)rpi = i /0.

good. In particular, it suffices to show théd,,,, > (1 + §)ry,. Indeed,

This proves part (a). For part (b) recall that |log 1%5 dyw | @andry; < 2dy,/(1 —9) sincew is (u, i, j)-

Toi < dyy + Ty < dy + Qduw/(l - 5) < 4duw/(1 + 5)7

claim proved. This completes the proof of the Lemma. O

SECOND ROUTING MODE Suppose routing switches o1, at nodeu; letd = d,;. By Lemma B.5 for
somei it is the case thatr,; /6 < %d < reui—1)- By Lemma 3.1 there exists a bdll € F; of cardinality
at leastn /2:t9(®) such thatB C B, (6r,;). Letw = hp be the node selected frofd in Theorem 3.2;
recall that it is a center of3. It is easy to see that the balt! = B, i—1) contains target. Indeed,
duw < 6ry; < 36d < d/6 sinces < £, and by Claim 3.3

T(w,i—1) > T(ui-1) — Ay > 4d/3 - d/6 > d+ dyw = du.

The nodes inB will collectively store the routes to all nodes i ; specifically, each node i3 will
store full routes t@°(® nodes inB’. Moreover, the nodes iB will maintain a shortest-path trégs rooted
ath. We label the edges @ so that givenp(¢), t € B’ it is possible to route from to the nodey; € B
that stores a path to thisc B’. Specifically, we label each nodewith a rangeR,, such that if a packet is
atu, and edgew € T, andiD(t) is within this range, then the packet is forwardedto

It is crucial that we are free to choose the ranggsto edges ofl'z and the mapping; from B’ to B
any way we want. We do it using a top-to-bottom construction on thefgeeFor technical convenience,
extendT's as follows: for every node € B add a distinct nodé, and edg€u, [,,), so that each node has a
corresponding leaf. We start from the root which is assigned the full rdnge]. For a node. € B with a
given range, partition this range into subranggsuv € T such thatR,| is proportional to the cardinality
of the subtree of 5 rooted atv. For each leaf = [,,, we assign ta: all nodest such thatd(¢) € R;.

This is how the packet will reach target First the nodé: (which is a neighbor ot:) is designated as
the intermediate target, and the packet is routetl e the first-hop pointers. From the packet is routed
to v; via the shortest-path tree. Thepnputs the full route ta into the packet header and send the packet to
t. More preciselyp; will store a(1 + §)-approximate shortest path tavith the smallest hop count, which
is at mostN; by definition of N5. Each hop in this path can be encoded [bxye Doyt] bits, whereDgy
is the maximal degree of the underlying connectivity graph, so the entire path can be stored using at most
Njs[log Doy] bits. Since a given node can lie in only one b&lke F}, it has to store at mog(®) paths for
eachi, for a total of at mose®(® log n paths. This completes the second routing mode.
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\ routing table size, bits packet header size, bits

modeM; (%)O(a)(Qﬁ logn)(log Dout) O(a¢logn)
total (%)O(a)w + Ns)(logn)(log Dout) O(a¢logn) + Ns[log Dout]

Table 3: Space requirements; let= log(§ log A).

Claim B.6 If the routing switches td\» at nodeu, then fromu to ¢ it has stretchl + O(J).

PROOF OF CORRECTNESSThe space requirements of both routing modes are summarized in Table 3. We
need to show that our routing scheme has strételd (§). If the packet reaches the target without switching
to My, this follows from Claim B.4. Now suppose it switchesAd, at nodew in the middle of a path to
some intermediate target Letu be the node that setas the intermediate target and tet= d,;. Let p,,y
be the distance traversed by the packet on its path from addeodey.

By Claim B.6p,:/du: < 1+0(9). By Claim B.4abw € B,(60d). By Claim B.4c, nodev lies on some
shortest path from, to v, and the packet followed this path fromto w. Putting this together, we get

(1+0(8)) duwt < (14 O(6)) (dwv + dvt) < duw + O(0d)
Puw + Put = duw + duwo + O(8d) = dyy + O(6d) = d + O(6d).

Pwt

<
Put <

Suppose the packet originated at hoddf s = u then we are done. l§ # « then by Claim B.4p,, <
(1+0(9))ds and by Claim B.4alal < dd. Therefore,

Pst = Psu T Put < (1 + 0(5)) (dst + d) < (1 + 0(5)) dsta

as claimed. This completes the proof of Theorem B.1.
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