Skip to main content

Advertisement

Log in

Time versus cost tradeoffs for deterministic rendezvous in networks

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous. Agents move in synchronous rounds. Each agent has a distinct integer label from the set \(\{1,\ldots ,L\}\). Two main efficiency measures of rendezvous are its time (the number of rounds until the meeting) and its cost (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound E on the time of exploration (where E and a corresponding exploration procedure are known to both agents) and of the size L of the label space. We present two natural rendezvous algorithms. Algorithm Cheap has cost O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly E) and time O(EL). Algorithm Fast has both time and cost \(O(E\log L)\). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically E (i.e., of cost \(E+o(E)\)) must have time \(\varOmega (EL)\). On the other hand, we show that any deterministic rendezvous algorithm with time complexity \(O(E\log L)\) must have cost \(\varOmega (E\log L)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A different way of counting time and cost (under which our results still hold) is discussed in Sect. 4.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29, 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223

  3. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S.: Rendezvous search on labelled networks. Nav. Res. Logist. 49, 256–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous.International Series in Operations research and Management Science. Kluwer, Dordrecht (2002)

    Google Scholar 

  6. Ambuehl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 17:1–17:21 (2011)

  7. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  8. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings of the 14th Annual ACM Symposium on Computational Geometry, pp. 365–373 (1998)

  9. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Oper. Res. 49, 107–118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discret. Appl. Math. 68, 17–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Averbakh, I., Berman, O.: \((p-1)/(p+1)\)-approximate algorithms for \(p\)-traveling salesmen problems on a tree with minmax objective. Discret. Appl. Math. 75, 201–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proceedings of the 24th International Symposium on Distributed Computing (DISC 2010), pp. 297–311

  14. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance is given by an unknown probability distribution. SIAM J. Control Optim. 36, 1880–1889 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Nav. Res. Logist. 48, 722–731 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85

  18. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995)

    Google Scholar 

  19. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Proceedings of the 14th International Conference on Principles of Distributed Systems (OPODIS 2010), pp. 119–134

  20. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25, 165–178 (2012)

    Article  MATH  Google Scholar 

  22. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37:1–37:14 (2012)

  23. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32, 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355, 315–326 (2006)

    Article  MATH  Google Scholar 

  25. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  26. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput. Sci. 326, 343–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dieudonné, Y., Pelc, A.: Deterministic network exploration by anonymous silent agents with local traffic reports. ACM Trans. Algorithms 11(2), 10:1–10:29 (2014)

    Article  Google Scholar 

  29. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)

    Article  MathSciNet  Google Scholar 

  30. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2(3), 380–402 (2006)

    Article  MathSciNet  Google Scholar 

  31. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proceedings of the 13th European Symposium on Algorithms (ESA 2005), pp. 11–22

  32. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees, ACM Trans. Algorithms 9(2), 17:1–17:24 (2013)

  35. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  36. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self stabilizing mutual exclusion. In: Proceedings of the 9th Annual ACM Symposium on Principles of Distributed Computing (PODC 1990), pp. 119–131

  37. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399, 141–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kranakis, E., Krizanc, D., Morin, P.: Randomized rendezvous with limited memory. ACM Trans. Algorithms 7(3), 34 (2011)

    Article  MathSciNet  Google Scholar 

  39. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS 2003), pp. 592–599

  40. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM J. Control Optim. 34, 1650–1665 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59, 331–347 (2012)

    Article  MathSciNet  Google Scholar 

  43. Redei, L.: Ein kombinatorischer Satz. Acta Litt. Szeged 7, 39–43 (1934)

    Google Scholar 

  44. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1–17:24 (2008)

  45. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)

    Article  MathSciNet  Google Scholar 

  46. Thomas, L.: Finding your kids when they are lost. J. Oper. Res. Soc. 43, 637–639 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referee for suggesting Algorithm FastWithRelabeling, which replaces a less efficient algorithm that we had in an earlier version. This work was partially supported by NSERC discovery Grant 8136-2013 and by the Research Chair in Distributed Computing at the Université du Québec en Outaouais.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avery Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, A., Pelc, A. Time versus cost tradeoffs for deterministic rendezvous in networks. Distrib. Comput. 29, 51–64 (2016). https://doi.org/10.1007/s00446-015-0253-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-015-0253-8

Keywords