Skip to main content
Log in

Gathering of robots on meeting-points: feasibility and optimal resolution algorithms

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

The paper considers variants of the gathering problem of oblivious and asynchronous robots moving in the plane. When \(n>2\) robots are free to gather anywhere in the plane, the problem has been solved in Cieliebak et al. (SIAM J Comput 41(4):829–879, 2012). We propose a new natural and challenging model that requires robots to gather only at some predetermined points in the plane, referred to as meeting-points. Robots operate in standard Look-Compute-Move cycles. In one cycle, a robot perceives the current configuration in terms of robots’ positions and meeting-points (Look) according to its own coordinate system, decides whether to move toward some direction (Compute), and in the positive case it moves (Move). Cycles are performed asynchronously for each robot. Robots are anonymous and execute the same distributed and deterministic algorithm. In the new proposed model, we fully characterize when gathering can be accomplished. We design an algorithm that solves the problem for all configurations with \(n>0\) robots but those identified as ungatherable. After that, we consider the classical notion of optimization algorithms and extend it to the context of robot-based computing systems. With this new notion, we re-consider the gathering on meeting-points problem but with respect to two objective functions. In particular, we first solve the gathering by minimizing the overall traveled distance performed by all robots and then we address the minimization of the maximum traveled distance performed by a single robot. For the former objective function, we fully characterize when optimal gathering can be achieved by providing a distributed algorithm along with the proof of correctness. For the latter objective function, we design another gathering algorithm that ensures optimal gathering almost for all the cases where it is possible, and discuss some insights on the remaining cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36

Similar content being viewed by others

Notes

  1. The subscript in the symbol \(V_r^+(p)\) is used to remark who is computing the view (in this case r), while the argument indicates the point from which the view is computed.

  2. If two points \(r'\in U(R)\) and \(m\in M\), different from p, are coincident, then points \(r',m\) will appear in this order in \(V_r^+(p) \).

  3. Remember that the terms clockwise and counter-clockwise always refer to the local coordinate system of the robot that computes the view. During a computational cycle, r maintains the same local orientation to compute the view of each point \(p\in R\cup M\), but the orientation could change between two different computational cycles.

  4. Configurations in class \(\mathscr {S}^{+}_5\), that is all robots and all Weber-points are collinear, have been already addressed.

References

  1. Abshoff, S., Cord-Landwehr, A., Jung, D., Meyer auf der Heide, F.: Towards gathering robots with limited view in linear time: the closed chain case. CoRR abs/1501.04877 (2015). http://arxiv.org/abs/1501.04877

  2. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proceedings of 32nd ACM Symposium on Principles of Distributed Computing (PODC) (2013)

  3. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ajith, A., Crina, G., Vitorino, R.: Stigmergic Optimization, Studies in Computational Intelligence, vol. 31. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  5. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderegg, L., Cieliebak, M., Prencipe, G.: Efficient algorithms for detecting regular point configurations. In: Proceedings of 9th Italian Conference on Theoretical Computer Science (ICTCS), LNCS, vol. 3701, pp. 23–35. Springer (2005)

  7. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin (1999)

    MATH  Google Scholar 

  8. Bajaj, C.: The algebraic degree of geometric optimization problems. Discrete Comput. Geom. 3(1), 177–191 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for black hole search in rings. Discrete Math. Algorithm Appl. 3(4), 457–472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proceedings of 24th International Symposium on Distributed Computing (DISC), LNCS, vol. 6343, pp. 297–311 (2010)

  11. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolla, K., Kovács, T., Fazekas, G.: Investigating the rate of failure of asynchronous gathering in a swarm of fat robots with limited visibility. In: Proceedings of 13th International Conference on Artificial Intelligence and Soft Computing (ICAISC), LNCS, vol. 8468, pp. 249–256. Springer (2014)

  13. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), pp. 337–346 (2013)

  14. Bouzid, Z., Dolev, S., Potop-Butucaru, M., Tixeuil, S.: Robocast: Asynchronous communication in robot networks. In: Principles of Distributed Systems—14th International Conference, OPODIS 2010. LNCS, vol. 6490, pp. 16–31. Springer (2010)

  15. Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local orientation. In: Proceedings of 37th International Confernce on Automata, Languages and Programming (ICALP), LNCS, vol. 6199, pp. 515–526 (2010)

  16. Chalopin, J., Das, S., Labourel, A., Markou, E.: Tight bounds for black hole search with scattered agents in synchronous rings. Theor. Comput. Sci. 509, 70–85 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chalopin, J., Das, S., Widmayer, P.: Rendezvous of mobile agents in directed graphs. In: Proceedings of 24th International Symposium on Distributed Computing (DISC), LNCS, vol. 6343, pp. 282–296. Springer (2010)

  18. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in spite of delay faults. Distributed Comput. 29(3), 187–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chatterjee, A., Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering asynchronous swarm robots under nonuniform limited visibility. In: Proceedings of 11th International Confernce on Distributed Computing and Internet Technology (ICDCIT), LNCS, vol. 8956, pp. 174–180. Springer (2015)

  20. Chaudhuri, S.G., Mukhopadhyaya, K.: Leader election and gathering for asynchronous fat robots without common chirality. J. Discrete Algorithms 33, 171–192 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cicerone, S., Di Stefano, G., Navarra, A.: Minimum-traveled-distance gathering of oblivious robots over given meeting-points. In: Proceedings of 10th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (Algosensors), LNCS, vol. 8847, pp. 57–72. Springer (2014)

  22. Cicerone, S., Di Stefano, G., Navarra, A.: Gathering of robots on meeting-points. In: Proceedings of 11th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (Algosensors), LNCS, vol. 9536, pp. 183–195. Springer (2015)

  23. Cicerone, S., Di Stefano, G., Navarra, A.: Minmax-distance gathering on given meeting-points. In: Proceedings of 9th International Confernce on Algorithms and Complexity (CIAC), LNCS, vol. 9079, pp. 127–139. Springer (2015)

  24. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous embedded pattern formation without orientation. In: Gavoille, C., Ilcinkas, D. (eds.) Distributed Computing. DISC 2016. Lecture Notes in Computer Science, vol. 9888, pp. 85–98. Springer, Berlin, Heidelberg (2016)

  25. Cieliebak, M.: Gathering non-oblivious mobile robots. In: Proceedings of 6th Latin American Symposium on Theoretical Informatics (LATIN), LNCS, vol. 2976, pp. 577–588. Springer (2004)

  26. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockayne, E.J., Melzak, Z.A.: Euclidean constructibility in graph-minimization problems. Math. Mag. 42(4), 206–208 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: Proceeding of 17th International Confernce on Distributed Computing and Networking (ICDCN), pp. 28:1–28:8. ACM (2016)

  31. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Proceedings of 9th International Confernce on Algorithms and Complexity (CIAC), LNCS, vol. 9079, pp. 140–152. Springer (2015)

  33. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distributed Comput. 25(2), 165–178 (2012)

    Article  MATH  Google Scholar 

  34. Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous in trees. Distributed Comput. 27(2), 95–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on anonymous grids and trees without multiplicity detection. Theor. Comput. Sci. 610, 158–168 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model. In: Search Theory: A Game Theoretic Perspective, pp. 197–222. Springer (2013)

  38. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering on rings under the look-compute-move model. Distributed Comput. 27(4), 255–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Défago, X., Gradinariu, M., Messika, S., Parvédy, P.R.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Proceedings of 20th International Symposium on Distributed Computing (DISC), LNCS, vol. 4167, pp. 46–60. Springer (2006)

  42. Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proceedings of 23rd ACM Symposium on Parallelism in algorithms and architectures (SPAA), pp. 139–148 (2011)

  43. D’Emidio, M., Frigioni, D., Navarra, A.: Explore and repair graphs with black holes using mobile entities. Theor. Comput. Sci. 605, 129–145 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power of anonymous mobile robots. In: Proceedings of 36th IEEE International Confernce on Distributed Computing Systems, (ICDCS), pp. 293–302. IEEE (2016)

  45. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs. In: Proceedings of 20th International Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS, vol. 8179, pp. 213–224 (2013)

  47. Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Proceedings of 16th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS, vol. 8756, pp. 211–225. Springer (2014)

  48. Dieudonné, Y., Dolev, S., Petit, F., Segal, M.: Deaf, dumb, and chatting asynchronous robots. In: Proceedings of 13th International Confernce on Principles of Distributed Systems (OPODIS), LNCS, vol. 5923, pp. 71–85. Springer (2009)

  49. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  50. Dieudonné, Y., Petit, F., Villain, V.: Leader election problem versus pattern formation problem. In: Proceedings of 24th International Symposium on Distributed Computing (DISC), LNCS, vol. 6343, pp. 267–281. Springer (2010)

  51. Farrugia, A., Gasieniec, L., Kuszner, L., Pacheco, E.: Deterministic rendezvous in restricted graphs. In: Proceedings of 41st International Confernce on Current Trends in Theory and Practice of Computer Science (SOFSEM), LNCS, vol. 8939, pp. 189–200. Springer (2015)

  52. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2012)

    MATH  Google Scholar 

  53. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant memory. Theor. Comput. Sci. 621, 57–72 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Proceedings of 22nd International Symposium on Distributed Computing (DISC), LNCS, vol. 5218, pp. 242–256 (2008)

  56. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through optimum matching by oblivious corda robots. In: Proceedings of 14th International Conference on Principles of Distributed Systems (OPODIS), LNCS, vol. 6490, pp. 1–15. Springer-Verlag (2010)

  57. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Honorat, A., Potop-Butucaru, M., Tixeuil, S.: Gathering fat mobile robots with slim omnidirectional cameras. Theor. Comput. Sci. 557, 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile robots gathering algorithm with local weak multiplicity in rings. In: Proceedings of 17th International Colloquium on Structural Information and Communication Complexity (SIROCCO), LNCS, vol. 6058, pp. 101–113 (2010)

  61. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Feasibility of polynomial-time randomized gathering for oblivious mobile robots. IEEE Trans. Parallel Distrib. Syst. 24(4), 716–723 (2013)

    Article  Google Scholar 

  62. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Time-optimal gathering algorithm of mobile robots with local weak multiplicity detection in rings. IEICE Trans. 96–A(6), 1072–1080 (2013)

    Article  MATH  Google Scholar 

  63. Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: An optimal result. In: Proceedings of 21st International Symposium on Distributed Computing (DISC), LNCS, vol. 4731, pp. 298–312. Springer (2007)

  64. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kamei, S., Lamani, A., Ooshita, F.: Asynchronous ring gathering by oblivious robots with limited vision. In: Proceedings of 33rd IEEE International Symposium on Reliable Distributed Systems Workshops, SRDS, pp. 46–49 (2014)

  66. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Proceedings of 37th International Symposium on Mathematical Foundations of Computer Science (MFCS), vol. 7464, pp. 542–553. Springer-Verlag (2012)

  67. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Komuravelli, A., Mihalák, M.: Exploring polygonal environments by simple robots with faulty combinatorial vision. In: Proceeding of 11th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), LNCS, vol. 5873, pp. 458–471. Springer (2009)

  70. Kosowski, A., Navarra, A., Pinotti, M.C.: Synchronous black hole search in directed graphs. Theor. Comput. Sci. 412(41), 5752–5759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Morgan & Claypool, San Rafael (2010)

  72. Kupitz, Y., Martini, H.: Geometric aspects of the generalized Fermat-Torricelli problem. No. 6 in Intuitive Geometry. Bolyai Society Math Studies (1997)

  73. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59(3), 331–347 (2012)

    Article  MathSciNet  Google Scholar 

  74. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley, New York (2007)

    MATH  Google Scholar 

  75. Sekino, J.: n-Ellipses and the minimum distance sum problem. Am. Math. Mon. 106(3), 193–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  76. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Trans. Auton. Adapt. Syst. 4(1) (2009). doi:10.1145/1462187.1462196

  77. Viglietta, G.: Rendezvous of two robots with visible bits. In: Proceedings of 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, (Algosensors), LNCS, vol. 8243, pp. 291–306. Springer (2013)

  78. Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tohoku Math. 43, 355–386 (1936)

    MATH  Google Scholar 

  79. Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points is minimum. Ann. Oper. Res. 167(1), 7–41 (2009)

  80. Yamashita, M., Souissi, S., Défago, X.: Gathering two stateless mobile robots using very inaccurate compasses in finite time. In: Proceedings of 1st International Conference on Robot Communication and Coordination (RoboComm), pp. 48:1–48:4 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafino Cicerone.

Additional information

Preliminary versions of this paper appeared in Proceedings of the 10th and 11th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (Algosensors ’14 and ’15) [21, 22], and in Proceedings of the 9th International Conference on Algorithms and Complexity (CIAC’15) [23].

The work has been supported in part by the European project Geospatial based Environment for Optimisation Systems Addressing Fire Emergencies” (GEO-SAFE), contract no. H2020-691161, by the Italian Ministry of Education, University, and Research (MIUR), by the project PRIN 2012C4E3KT “AMANDA—Algorithmics for MAssive and Networked DAta”, and by the Italian project RISE: un nuovo framework distribuito per data collection, monitoraggio e comunicazioni in contesti di emergency response”, Fondazione Cassa Risparmio Perugia, code 2016.0104.021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cicerone, S., Di Stefano, G. & Navarra, A. Gathering of robots on meeting-points: feasibility and optimal resolution algorithms. Distrib. Comput. 31, 1–50 (2018). https://doi.org/10.1007/s00446-017-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-017-0293-3

Keywords

Navigation