Skip to main content
Log in

Superstabilizing mutual exclusion

  • Original articles
  • Published:
Distributed Computing Aims and scope Submit manuscript

Summary.

A superstabilizing protocol is a protocol that i is self-stabilizing, meaning that it can recover from an arbitrarily severe transient fault; and ii can recover from a local transient fault while satisfying a passage predicate during recovery. This paper investigates the possibility of superstabilizing protocols for mutual exclusion in a ring of processors, where a local fault consists of any transient fault at a single processor; the passage predicate specifies that there be at most one token in the ring, with the single exception of a spurious token colocated with the transient fault. The first result of the paper is an impossibility theorem for a class of superstabilizing mutual exclusion protocols. Two unidirectional protocols are then presented to show that conditions for impossibility can independently be relaxed so that superstabilization is possible using either additional time or communication registers. A bidirectional protocol subsequently demonstrates that superstabilization in O(1) time is possible. All three superstabilizing protocols are optimal with respect to the number of communication registers used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: August 1996 / Accepted: March 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herman, T. Superstabilizing mutual exclusion. Distrib Comput 13, 1–17 (2000). https://doi.org/10.1007/s004460050001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004460050001