Skip to main content
Log in

An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements

  • Special Issue Paper
  • Published:
Computer Science - Research and Development

Abstract

We present an object-oriented library for the systematic training, testing and benchmarking of classification algorithms for computer-assisted diagnosis tasks, with a focus on tumor probability estimation from magnetic resonance spectroscopy imaging (MRSI) measurements. In connection with a graphical user interface for data annotation, it allows clinical end users to flexibly adapt these classifiers towards changed classification tasks, to benchmark various classifiers and preprocessing steps and to perform quality control of the results. This poses an advantage over previous classification software solutions, which required expert knowledge in pattern recognition techniques in order to adapt them to changes in the data acquisition protocols. This software will constitute a major part of the MRSI analysis functionality of RONDO, an integrated software platform for cancer diagnosis and therapy planning which is under current development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arya S, Mount D, Netanyahu N et al. (1998) An optimal algorithm for approximate nearest neighbor searching. J ACM 45:891–923

    Article  MATH  MathSciNet  Google Scholar 

  2. Bandos A, Rockette H, Gur D (2007) Exact bootstrap variances of the area under ROC curve. Commun Stat, Theory Methods 36:2443–2461

    Article  MATH  MathSciNet  Google Scholar 

  3. Bengio Y, Grandvalet Y (2004) No unbiased estimator of the variance of K-fold cross-validation. J Mach Learn Res 5:1089–1105

    MathSciNet  Google Scholar 

  4. Breiman L (1996) Out-of-bag estimation. Tech. rep., UC Berkeley

  5. Chang C, Lin C (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.tw/cjlin/libsvm

  6. Cho S, Kim M, Kim H et al. (2001) Chronic hepatitis: in vivo proton MR spectroscopic evaluation of the liver and correlation with histopathologic findings. Radiology 221(3):740–746

    Article  Google Scholar 

  7. Dager S, Oskin N, Richards T, Posse P (2008) Research applications of magnetic resonance spectroscopy (MRS) to investigate psychiatric disorders. Top Magn Reson Imaging 19(2):81–96

    Article  Google Scholar 

  8. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  Google Scholar 

  9. Dietterich T (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10:1895–1923

    Article  Google Scholar 

  10. de Edelenyi FS, Rubin C, Estève F et al. (2000) A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 6:1287–1289

    Article  Google Scholar 

  11. Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  12. Frigo M, Johnson S (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  13. García-Gomez J, Luts J, Julià-Sapé M et al. (2009) Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magn Reson Mater Phys 22:5–18

    Article  Google Scholar 

  14. Gillies R, Morse D (2005) In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 7:287–326

    Article  Google Scholar 

  15. Golub G, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2):215–223

    Article  MATH  MathSciNet  Google Scholar 

  16. González-Vélez H, Mier M, Julià-Sapé M et al. (2009) HealthAgents: distributed multi-agent brain tumor diagnosis and prognosis. Appl Intell 30:191–202

    Article  Google Scholar 

  17. Görlitz L, Menze B, Weber M et al. (2007) Semi-supervised tumor detection in magnetic resonance spectroscopic images using discriminative random fields. In: Proceedings DAGM 2007. Lecture notes in computer science, vol 4713/2007, pp 224–233

    Google Scholar 

  18. de Graaf R (2008) In vivo NMR spectroscopy: principles and techniques. Wiley, New York

    Google Scholar 

  19. Grandvalet Y, Bengio Y (2006) Hypothesis testing for cross-validation. Tech Rep TR 1285, Département d’Informatique et Recherche Opérationelle, University of Montréal

  20. Hagberg G (1998) From magnetic resonance spectroscopy to classification of tumors: a review of pattern recognition methods. NMR Biomed 11(4–5):148–156

    Article  Google Scholar 

  21. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York

    Book  MATH  Google Scholar 

  22. Kaster F, Kelm B, Zechmann C et al. (2009) Classification of spectroscopic images in the DIROlab environment. In: World congress on medical physics and biomedical engineering, IFMBE Proc, vol 25/V, pp 252–255

    Google Scholar 

  23. Kelm B, Menze B, Neff T et al. (2006) CLARET: a tool for fully automated evaluation of MRSI with pattern recognition methods. In: Handels H, Ehrhardt J, Horsch A et al. (eds) Bildverarbeitung für die Medizin 2006 – Algorithmen, Systeme, Anwendungen, pp 51–55

    Chapter  Google Scholar 

  24. Kelm B, Menze B, Zechmann C et al. (2007) Automated estimation of tumor probability in prostate magnetic resonance spectroscopic imaging: pattern recognition vs quantification. Magn Reson Med 57:150–159

    Article  Google Scholar 

  25. Köthe U (2000) Generische Programmierung für die Bildverarbeitung. Ph.D. thesis, University of Hamburg, software available at http://hci.iwr.uni-heidelberg.de/vigra/

  26. Kreis R (2004) Issues of spectral quality in clinical 1H magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17(6):361–381

    Article  Google Scholar 

  27. Lin H, Lin C, Weng R (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68:267–276

    Article  Google Scholar 

  28. Martínez-Bisbal M, Celda B (2009) Proton magnetic resonance spectroscopy imaging in the study of human brain cancer. Q J Nucl Med Mol Imaging 53(6):618–630

    Google Scholar 

  29. Maudsley A, Darkazanli A, Alger J et al. (2006) Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed 19(4):492–503

    Article  Google Scholar 

  30. Menze B, Lichy M, Bachert P et al. (2006) Optimal classification of long echo time in vivo magnetic resonance spectra in the detection of recurrent brain tumors. NMR Biomed 19(5):599–609

    Article  Google Scholar 

  31. Menze B, Kelm B, Weber M et al. (2008) Mimicking the human expert: pattern recognition for an automated assessment of data quality in MR spectroscopic images. Magn Reson Med 59:1457–1466

    Article  Google Scholar 

  32. Neuter BD, Luts J, Vanhamme L et al. (2007) Java-based framework for processing and displaying short-echo-time magnetic resonance spectroscopy signals. Comput Methods Programs Biomed 85:129–137

    Article  Google Scholar 

  33. Ortega-Martorell S, Olier I, Julià-Sapé M et al. (2010) SpectraClassifier 1.0: a user friendly, automated MRS-based classifier-development system. BMC Bioinform 11:106

    Article  Google Scholar 

  34. Poullet J, Sima D, Van Huffel S (2008) MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson 195(2):134–144

    Article  Google Scholar 

  35. Provencher S (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264

    Article  Google Scholar 

  36. Rifkin R, Klautau A (2004) In defense of one-vs-all classification. J Mach Learn Res 5:101–141

    MathSciNet  Google Scholar 

  37. Sajja B, Wolinsky J, Narayana P (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 19(1):45–58

    Article  Google Scholar 

  38. Smith S, Levante T, Meier B et al. (1994) Computer simulations in magnetic resonance: an object-oriented programming approach. J Magn Reson A106(1):75–105

    Article  Google Scholar 

  39. Stefan D, Cesare FD, Andrasescu A et al. (2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 20:104 035

    Article  Google Scholar 

  40. Stroustrup B (2001) Exception safety: concepts and techniques. In: Dony C, Knudsen J, Romanovsky A et al. (eds) Advances in exception handling techniques. Springer, New York, pp 60–76

    Chapter  Google Scholar 

  41. Tate A, Underwood J, Acosta D et al. (2006) Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed 19(4):411–434

    Article  Google Scholar 

  42. Xu D, Vigneron D (2010) Magnetic resonance spectroscopy imaging of the newborn brain—a technical review. Semin Perinatol 34(1):20–27

    Article  Google Scholar 

  43. Zechmann C, Menze B, Kelm B, Zamecnik P, Ikinger U, Waldherr R, Delorme S, Hamprecht F, Bachert P (2010) How much spatial context do we need? Automated versus manual pattern recognition of 3D MRSI data of prostate cancer patients. NMR Biomed (submitted)

  44. Zhu G, Smith D, Hua Y (1997) Post-acquisition solvent suppression by singular-value decomposition. J Magn Reson 124:286–289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik O. Kaster.

Additional information

This research was supported by the Helmholtz International Graduate School for Cancer Research and by the German Federal Ministry for Education and Research within the DOT-MOBI project (grant no. 01IB08002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaster, F.O., Merkel, B., Nix, O. et al. An object-oriented library for systematic training and comparison of classifiers for computer-assisted tumor diagnosis from MRSI measurements. Comput Sci Res Dev 26, 65–85 (2011). https://doi.org/10.1007/s00450-010-0143-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-010-0143-z

Keywords

Navigation