Abstract
Large parts of the worldwide energy system are undergoing drastic changes at the moment. Two of these changes are the increasing share of intermittent generation technologies and the advent of the smart grid. A possible application of smart grids is demand response, i.e., the ability to influence and control power demand to match it with fluctuating generation. We present a heuristic approach to coordinate large amounts of time-flexible loads in a smart grid with the aim of peak shaving with a focus on algorithmic efficiency. A practical evaluation shows that our approach scales to large instances and produces results that come close to optimality.





Similar content being viewed by others
References
Allerding F, Mauser I, Schmeck H (2014) Customizable energy management in smart buildings using evolutionary algorithms. Springer, Berlin, pp 153–164. doi:10.1007/978-3-662-45523-4_13
Ashok S (2006) Peak-load management in steel plants. Appl Energy 83(5):413–424. doi:10.1016/j.apenergy.2005.05.002
Chuzhoy J, Guha S, Khanna S, Naor JS (2004) Machine minimization for scheduling jobs with interval constraints. In: 45th annual IEEE symposium on foundations of computer science, pp 81–90. doi:10.1109/FOCS.2004.38
Cieliebak M, Erlebach T, Hennecke F, Weber B, Widmayer P (2004) Scheduling with release times and deadlines on a minimum number of machines. Springer, Boston, pp 209–222. doi:10.1007/1-4020-8141-3_18
Deckro RF, Hebert JE (1989) Resource constrained project crashing. Omega 17(1):69–79. doi:10.1016/0305-0483(89)90022-4
Earle R, Kahn EP, Macan E (2009) Measuring the capacity impacts of demand response. Electr J 22(6):47–58. doi:10.1016/j.tej.2009.05.014
Fang X, Misra S, Xue G, Yang D (2012) Smart grid the new and improved power grid: a survey. IEEE Commun Surv Tutor 14(4):944–980. doi:10.1109/SURV.2011.101911.00087
Gottwalt S, Grttner J, Schmeck H, Weinhardt C (2016) Modeling and valuation of residential demand flexibility for renewable energy integration. IEEE Trans Smart Grid PP(99):1–10. doi:10.1109/TSG.2016.2529424
Guldemond TA, Hurink JL, Paulus JJ, Schutten JMJ (2008) Time-constrained project scheduling. J Sched 11(2):137–148. doi:10.1007/s10951-008-0059-7
Kolter JZ, Johnson, MJ (2011) Redd: a public data set for energy disaggregation research. In: SustKDD
Li Y, Ng BL, Trayer M, Liu L (2012) Automated residential demand response: algorithmic implications of pricing models. IEEE Trans Smart Grid 3(4):1712–1721. doi:10.1109/TSG.2012.2218262
Mitra S, Grossmann IE, Pinto JM, Arora N (2012) Optimal production planning under time-sensitive electricity prices for continuous power-intensive processes. Comput Chem Eng 38:171–184. doi:10.1016/j.compchemeng.2011.09.019
Pedrasa MAA, Spooner TD, MacGill IF (2010) Coordinated scheduling of residential distributed energy resources to optimize smart home energy services. IEEE Trans Smart Grid 1(2):134–143. doi:10.1109/TSG.2010.2053053
Petersen MK, Hansen LH, Bendtsen J, Edlund K, Stoustrup J (2014) Heuristic optimization for the discrete virtual power plant dispatch problem. IEEE Trans Smart Grid 5(6):2910–2918. doi:10.1109/TSG.2014.2336261
Pritsker AAB, Waiters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one programming approach. Manag Sci 16(1):93–108
Siano P (2014) Demand response and smart grids a survey. Renew Sustain Energy Rev 30:461–478. doi:10.1016/j.rser.2013.10.022
US Department of Energy (2006) Benefits of demand response in electricity markets and recommendations for achieving them
Yaw S, Mumey B, McDonald E, Lemke J (2014) Peak demand scheduling in the smart grid. In: 2014 IEEE international conference on smart grid communications (SmartGridComm), pp 770–775. doi:10.1109/SmartGridComm.2014.7007741
Zibelman A, Krapels EN (2008) Deployment of demand response as a real-time resource in organized markets. Electr J 21(5):51–56. doi:10.1016/j.tej.2008.05.011
Author information
Authors and Affiliations
Corresponding author
Additional information
Lukas Barth’s work was supported by the German Research Foundation (DFG) as part of the Research Training Group GRK 2153: Energy Status Data—Informatics Methods for its Collection, Analysis and Exploitation.
Rights and permissions
About this article
Cite this article
Barth, L., Wagner, D. Exploiting flexibility in smart grids at scale. Comput Sci Res Dev 33, 185–191 (2018). https://doi.org/10.1007/s00450-017-0357-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00450-017-0357-4