Zusammenfassung.
In diesem Aufsatz wird untersucht, wie man Fuzzy-Systeme auf der Basis von repräsentativem Datenmaterial automatisch generieren kann. Wir analysieren dazu induktive Lernverfahren, die ihren Ursprung in der Clusteranalyse und den Neuronalen Netzen haben. Anhand von zwei konkreten Softwaretools wird gezeigt, daß diese induktiven Methoden eine Ergänzung zu den klassischen Verfahren der Erstellung von Fuzzy-Systemen bieten.
Abstract.
In this paper we examine how fuzzy systems can be automatically generated on the basis of representative data. We analyze inductive learning procedures, which have their origin in cluster analysis and neural networks. By means of two software tools we show that these inductive methods offer an addition to the classical means to create fuzzy systems.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Author information
Authors and Affiliations
Additional information
Eingegangen am 11. Juni 1996 / Angenommen am 18. Dezember 1996
Rights and permissions
About this article
Cite this article
Kruse, R., Klawonn, F. & Nauck, D. Erlernen von Fuzzy-Regeln . Informatik Forsch Entw 12, 2–6 (1997). https://doi.org/10.1007/s004500050066
Issue Date:
DOI: https://doi.org/10.1007/s004500050066