
DOI: 10.1007/s00453-001-0123-6

Algorithmica (2002) 33: 353–370 Algorithmica
© 2002 Springer-Verlag New York Inc.

Caching for Web Searching1

B. Kalyanasundaram,2 J. Noga,3 K. R. Pruhs,4 and G. J. Woeginger3

Abstract. We study Web Caching when the input sequence is a depth first search traversal of some tree.
There are at least two good motivations for investigating tree traversal as a search technique on the WWW:
First, empirical studies of people browsing and searching the WWW have shown that user access patterns
commonly are nearly depth first traversals of some tree. Secondly (as we will show in this paper), the problem
of visiting all the pages on some WWW site using anchor clicks (clicks on links) and back button clicks—by
far the two most common user actions—reduces to the problem of how best to cache a tree traversal sequence
(up to constant factors).

We show that for tree traversal sequences the optimal offline strategy can be computed efficiently. In the
bit model, where the access time of a page is proportional to its size, we show that the online algorithm
LRU is (1+ 1/ε)-competitive against an adversary withunboundedcache as long as LRU has a cache of
size at least(1 + ε) times the size of the largest item in the input sequence. In the general model, where
pages have arbitrary access times and sizes, we show that in order to be constant competitive, any online
algorithm needs a cache large enough to storeÄ(logn) pages; heren is the number of distinct pages in the
input sequence. We provide a matching upper bound by showing that the online algorithm Landlord is constant
competitive against an adversary with an unbounded cache if Landlord has a cache large enough to store the
Ä(logn) largest pages. This is further theoretical evidence that Landlord is the “right” algorithm for Web
Caching.

Key Words. Web Caching, Greedy-Dual-Size, Web searching, Landlord, Least recently used, LRU.

1. Introduction

1.1. Problem Statement and Motivation. Web Caching is the temporary local storage
of WWW pages by a browser for later retrieval. From the user’s point of view, the
primary benefit of caching is reduced latency, as the time to access locally stored objects
is minimal. We adopt the following standard general model of Web Caching [1], [5],
[8], [15]:

WEB CACHING PROBLEM STATEMENT. The browser is given an online sequenceS of
page requests, where each pagepi ∈ Shas a sizes(i ) (say, in bytes) and an access time

1 The first and third authors were supported in part by NSF Grant CCR-9734927 and by ASOSR Grant
F49620010011. The second and fourth authors were supported by the START program Y43-MAT of the
Austrian Ministry of Science.
2 Computer Science Department, Georgetown University, Washington, DC 20057-1232, USA.
kalyan@cs.georgetown.edu.
3 Department of Mathematics, Technical University of Graz, Steyrergasse 30, A-8010 Graz, Austria.
{noga,gwoegi}@opt.math.tu-graz.ac.at.
4 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA. kirk@cs.pitt.edu.

Received November 5, 1999; revised September 19, 2000. Communicated by M. Goodrich.
Online publication March 25, 2002.



354 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

t (i ) that is required ifpi is not cached. If the requested pagepi is not in the cache (this
is called a cache miss), then the time to accesspi is t (i ). Otherwise, ifpi is in the cache
(this is called a cache hit), thenpi may be accessed instantaneously. After the request
of pagepi , but before the next request, the algorithm may evict/decache any arbitrary
collection of pages and putpi in its cache. At no time can the aggregate sizes of the
pages in cache exceed the fixed cache sizek. The objective function is to minimize the
total access time.

Note that we adopt the non-forced caching model here, that is, the algorithm need not
cache an accessed page. The differences between the results for forced caching and for
non-forced caching models are negligible.

All of the previous work on Web Caching that we are aware of assumes that the
sequenceS may be arbitrary. In this paper we consider the case thatS is a depth first
traversal of some treeT of pages. (Note that this restriction on the input allows us to
obtain results that are stronger in a fundamental way.) We are motivated to consider this
problem for two reasons. The first reason is that empirical studies of people browsing
and searching the WWW have shown that user access patterns are commonly nearly
depth first tree traversals [4], [7], [13]. That is, people tend to visit new pages via an
anchor click (more than 50% of user actions are anchor clicks [4]), and to revisit pages
using the back button (more than 40% of user actions are back button clicks [4]). No
other action accounts for more than 2% of users’ actions [4]. Secondly, we show that the
problem of visiting all the pages on some WWW site using anchor clicks and the back
button essentially reduces to the problem of how best to cache a tree traversal sequence.
This may be viewed as providing theoretical justification for tree traversal as a search
technique on the WWW.

SITE SEARCH PROBLEM STATEMENT. Informally, the searcher starts at the home page
ph (say for example, www.microsoft.com) of some WWW site (say Microsoft’s WWW
site) with unknown topology. The searcher’s goal is to visit every page reachable from
the home page using anchors and the back button. More formally, an online algorithm
starts at some node in an initially unknown directed graphG. Each node inG is a page
pi with sizes(i ) and access timet (i ). We assume that every node inG is reachable from
the start page. When the online algorithm visits a nodepi it learnss(i ), t (i ), and the
names of each pagepj such that(pi , pj ) is a directed edge inG. If pi is not in the cache,
then the online algorithm must payt (i ), otherwise the online algorithm pays nothing
for this visit. After visiting pi , the algorithm may decache any arbitrary collection of
pages and putpi in its cache. At no time may the aggregate sizes of the pages in the
cache exceedk. After making its caching decision the online algorithm may make one
of two moves. First, it can pushpi onto a stackS, and then move to a pagepj with
the property that(pi , pj ) is an edge inG. Second, it can pop the top pagepj off of S
and return topj . The online algorithm must visit every page and return to the initial
home pageph. (Note that the requirement that the online algorithm return to the initial
page is for convenience. Dropping this requirement will only change the competitive
ratio by at most a factor of two.) The objective function is to minimize the aggregate
access time of those visits where the visited page was not cached at the time of the
visit.



Caching for Web Searching 355

Thus Site Search requires that the online algorithm must specify both a search
strategy and a caching strategy. We show that, without loss of generality, online al-
gorithms may restrict themselves to search strategies that traverse trees. That is, we
show that the competitive ratio of every online algorithmA for the Site Search Problem
is2(maxT∈Tn(A(T)/t (T))), whereTn is the collection of all directed rooted trees onn
nodes with edges directed away from the root,A(T) is the total access time for algorithm
A on the treeT assuming that it starts at the root ofT , andt (T) = ∑

pi∈T t (i ) is the
aggregate access times of the nodes inT .

Note that there are some differences between Site Search on trees and Web Caching
on depth first tree traversal sequences. The online algorithm in Site Search may decide
how it will traverse the treeT (this traversal need not be a depth first search traversal),
while the online algorithm for Web Caching does not have this power. In Site Search the
online algorithm learns the degree of a node when it visits that node, which is not the case
in Web Caching on depth first tree traversals. Most importantly, the competitive ratio for
an online algorithmA for Site Search on a tree comparesA(T) against the aggregate
access timest (T) of the pages inT , while for Web Caching on depth first tree traversal
sequencesSof T , the competitive ratio comparesA(S) against the optimal offline cost.
We will show that the optimal offline cost may be much higher thant (T).

There are three special cases of the caching models that have been studied previ-
ously [1], [8]. In thebit modelthe access time is assumed to equal the size of the page.
This model would be appropriate if the pages are large and the delay in the network is
small. In thecost modelthe size of each page is one, while the access times are allowed
to be arbitrary. This is an appropriate model if the page sizes are roughly equal. For our
purposes in this paper, the cost model is really no easier for online algorithms than the
general model. In thefault modelthe access time for each page is constant, while page
sizes may be arbitrary. In theuniform modelthe access time for each page is constant,
and the page sizes are constant.

Consider for the moment the fault model, where the input is a depth first search
traversal sequence of a tree withn nodes. If no cache is available, then the cost is the sum
of the degrees of the nodes in the tree, which can easily be seen to be 2n− 2 since each
edge is included twice, and a tree onn nodes containsn− 1 vertices. If an unbounded
cache is available, then the cost isn since each page only faults on the first reference
to that page. Hence the fault model, and the uniform model, are not so interesting in
our setting since every online algorithm, without a cache, is 2-competitive against an
adversary with an unbounded cache.

Consider for the moment the uniform model on arbitrary inputs. It is well known that
the optimal offline algorithm always ejects the page that will be referenced farthest in the
future. Hence, the difficulty in the online setting is somehow to do reasonably well even
though one does not know when pages will be next referenced. In the seminal paper [12],
it is shown that both the algorithms First-In-First-Out (FIFO) and Least-Recently-Used
(LRU) are optimally competitive. Now consider the general model on arbitrary inputs.
In addition to wanting to keep pages that will be accessed in the near future, the caching
algorithm intuitively also wants to keep pages that are smaller (since they take up less of
the cache resource), and wants to keep pages that have high cost (since a fault on these
pages will be more expensive). It is not obvious how one should resolve these competing
demands. Surprisingly, there is an algorithm, called Greedy-Dual-Size, which is in some



356 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

sense a generalization of LRU, and which is as competitive in the general model as
LRU is in the uniform model [3], [5], [15]. The down side to these results is that the
competitive ratios of Greedy-Dual-Size and LRU are linear in the size of the cache.
One of our goals here is to determine whether there are algorithms that perform better
than Greedy-Dual-Size and LRU if the input is restricted to depth first tree traversal
sequences (we find that essentially there are not). Another goal is to determine whether
better competitive ratios are obtained if the input is restricted to depth first search tree
traversals (we find that it depends on the relationship between the size of the tree and
the size of the cache).

1.2. Our Results. Our results differ from prior work on caching in a fundamental way.
In particular, we bound the size of cache required by an online algorithm in order to
be constant competitive against an offline optimal algorithm that uses anunbounded
amount of cache.

In Section 2 we give the following foundational results. We show that the competitive
ratio of any online algorithm for Site Search is2(maxT∈Tn(A(T)/t (T))). We give a
pseudo-polynomial-time offline dynamic programming algorithm to compute OPT(S)
whenS is a depth first tree traversal. This stands in contrast to offline Web Caching for
general sequences, where no pseudo-polynomial-time algorithm is known [1].

In Section 3 we investigate Site Search and Web Caching under the bit model. For
Web Caching, we show that the online algorithm LRU is(1+ 1/ε)-competitive against
an adversary withunboundedcache as long as LRU has a cache of size at least(1+ ε)L,
whereL is the size of the largest item in the input sequence. Note that an algorithm with
unbounded cache only has to pay to access each item once; so another way to state this
result is that the total access time for LRU is at most(1+1/ε) times the aggregate access
times of the pages regardless of how often these pages are accessed. Similarly, for Site
Search we show that the online algorithm that uses a depth first traversal and LRU is
(1+ 1/ε)-competitive against an adversary with an unbounded cache as long as LRU
has a cache of size at least(1+ ε)L.

In Section 4 we give lower bounds on the competitive ratios for Web Caching
and Site Search in the cost model (obviously these also hold in the general model).
We first show a lower bound ofÄ(min(k,n1/(k+1))) on the competitive ratio of any
deterministic online algorithm for Web Caching. We then show a lower bound of
Ä(max(1/k, k/ logn)n1/(k+1)) on the competitive ratio of any deterministic online al-
gorithm for Site Search. We accomplish this by showing that maxt∈Tn(OPTk(T)/t (T))
is Ä(max(1/k, k/ logn)n1/(k+1)), where OPTk(T) is the optimal offline cost for Site
Search onT . Thus these results show that for both Web Caching and Site Search, an
online algorithm needs at least a logarithmically sized cache to be constant competitive.

In Section 5 we analyze the online algorithm Landlord (this algorithm is a gener-
alization of LRU and is also called Greedy-Dual-Size in the literature) [3], [5], [15].
Although we state all results in the cost model, the results hold for the general model ifk
is replaced byk/L. We show that Landlord isO(min(k, (logn)/k)n1/(k+1))-competitive
for Web Caching on depth first tree traversal sequences. We also show that the online
algorithm that uses a depth first traversal and Landlord isO(min(k, (logn)/k)n1/(k+1))-
competitive for Site Search. The proper way to interpret this result is that for both Site
Search and for Web Caching on tree sequences, Landlord is constant competitive against



Caching for Web Searching 357

an adversary with an unbounded cache if Landlord has a cache large enough to hold at
least logn pages. That is, a multiplicative increase in the number of pages only requires
an additive increase in cache size to remain competitive against an adversary with infi-
nite cache. Yet another way to interpret this result is that the number of pages that an
adversary has to use to fool Landlord is exponential in the cache size.

To date, Landlord appears to be the theoretical champion for Web Caching on arbitrary
sequences [3], [5], [15]. Sections 4 and 5 together show that even if Landlord is not the
theoretical champion for depth first tree traversal sequences, then at least it is not far away
from being the champion. That is, even if one was going to design an online algorithm
specifically for depth first tree traversal sequences, one could not do a whole lot better
than Landlord. We take this as further theoretical evidence that Landlord is the “right”
algorithm for Web Caching.

Notice that LRU is what we call anobliviousalgorithm, in that it ignores the access
times of the pages. In Section 6 we consider oblivious algorithms in the cost model. We
show that the online algorithm Least Frequently Evicted (LFE) is optimally competi-
tive among oblivious online algorithms for Web Caching on tree traversal sequences.
Furthermore, for Site Search we show that the online algorithm that uses a depth first
traversal and LFE is strongly competitive ifk = O(1). An online algorithmA isstrongly
competitive for a problemP if the competitive ratio ofA is at most a constant factor
worse than the competitive ratio of any other online algorithm forP. This is in contrast
to Site Search in the cost model withk = ω(1), and to Web Caching in the cost model
over all ranges ofk, where we show that there are no strongly competitive oblivious
algorithms.

1.3. Related Results. We first discuss known results for offline Web Caching. It is easy
to see that Web Caching in the bit model (and in the general model) is NP-hard in the
ordinary sense. In [8] polynomial-time offlineO(logk)-approximation algorithms are
given for the bit model and for the fault model. In [1] a polynomial-time offlineO(1)-
approximation is given, provided that the polynomial-time algorithm is given additional
O(L) cache, whereL is the size of the largest page. Additionally in [1] a polynomial-time
offline O(log(k+ L))-approximation algorithm is derived.

Next, we consider online Web Caching. The algorithm Greedy-Dual-Size is intro-
duced in [3], where it is shown to bek-competitive. Greedy-Dual-Size is a generaliza-
tion of the algorithm Greedy-Dual in [14] that is specific for the cost model. In [15]
it is shown that Greedy-Dual-Size (this paper introduces the name Landlord for this
algorithm) isk/(k− h+ 1)-competitive against an adversary with cache sizeh assum-
ing forced caching. In [15] it is also shown that in some sense for most choices ofk,
the retrieval cost is either insignificant or the competitive ratio is constant. In [5] it is
shown, using linear programming duality, that Greedy-Dual-Size is(k+1)/(k−h+1)-
competitive against an adversary with cache sizeh assuming non-forced caching. In
[8] online randomizedO

(
log2 k

)
-competitive algorithms are given for the bit and fault

models .
Previous researchers have theoretically studied the caching problem with uniform

times and uniform sizes under particular input patterns. In [2] (and in several follow-up
papers) the input is assumed to be a walk in a graph, and in [11] the input is assumed to
be the output of a Markov chain. In [9] it is shown that if the input sequence is a depth



358 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

first traversal of a tree, then LRU will have 2n− k cache misses, and that LRU always
performs better than Most Recently Used on depth first traversal sequences.

In [6] the direct-mapped caching problem was studied with sequential access se-
quences. Perhaps the most closely related result to the search part of Site Search is in
[10]. Recasting the results from a geometric setting to the Site Search setting, it is shown
in [10] that there is an online algorithm that is constant competitive ifk = 0, G is planar,
and the edge relation inG is symmetric.

2. Foundational Results

THEOREM1. For Site Search in any model(general, cost, or bit), the competitive ratio
of every deterministic online algorithm A is2(maxT∈Tn(A(T)/t (T))).

PROOF. The competitive ratio is at most maxT∈Tn(A(T)/t (T)), since the online searcher
may perform a depth first traversal of the site and the offline searcher has to access every
page at least once.

To see why the competitive ratio is at least1
4 maxT∈Tn(A(T)/t (T)), let T be an

arbitrary directed rooted tree onn nodes with all edges directed away from the root.
Let pn be the last page inT visited by A. Create a directed graphG that includes each
directed edge inT and directed edges going frompn to every other node inT . Then
A’s actions onG are identical toA’s actions onT until pn is visited. Frompn, A may
return directly to the root; hence,A(G) ≥ 1

2 A(T). The offline adversary may visit all of
G incurring cost at most 2t (T) by traversing the shortest path from the root topn, then
visiting each remaining unvisited node in a hub and spoke pattern frompn, and then
backing up to the root.

For an instanceT ∈ Tn of Site Search, we define OPTk(T) to be a minimum access
time strategy for visiting all the nodes inT and returning to the root ofT assuming that
the cache size isk. We show for Site Search on trees that the optimal offline algorithm
may use any depth first search that it likes. Note that this in no way implies that the
optimally competitiveonline algorithm uses depth first search.

LEMMA 2. For every depth first traversal S of a tree T, there is an optimal Site Search
strategy that uses S to traverse the tree T.

PROOF. First notice that OPT never profits from caching a nodepi and then decaching
pi before it is accessed again. Secondly, we may assume without loss of generality that
OPT always decaches a nodepi at the time that it returns topi ’s parent inT .

We first prove by a local replacement argument that there is an optimal strategy that
usessomedepth first search. LetTc be a subtree that is visited twice frompc’s parent
pr . Assume that the sequence of nodes visited by OPT is

αpr pcβpc pr γ pr pcδpc pr ε,

whereα, β, γ , δ, andε are subsequences of nodes. We consider two cases.



Caching for Web Searching 359

In the first case we assume that OPT had more cache unfilled afterαpr than after
αpr pcβpc pr γ pr . In this case we modify the strategy to get a new strategy OPT′ by
letting the sequence of pages be

αpr pcβpcδpc pr γ pr ε.

The caching strategy by OPT′ within the subsequencesαpr , pcβ, pcδpc, pr γ , andpr ε is
the same as used by OPT within these subsequences.

In the second case we assume that OPT had no more cache unfilled afterαpr than
afterαpr pcβpc pr γ pr . In this case we modify the strategy to get a new strategy OPT′ by
letting the sequence of pages be

αpr γ pr pcβpcδpc pr ε.

The caching strategy by OPT′ within the subsequencesα, pr γ , pr pcβ, pcδ, and pr ε is
the same as used by OPT within these subsequences.

Its easy to see that in both cases the total access time for OPT′ is at most the total
access time for OPT. Notice also that there are strictly fewer pages accessed in OPT′ than
OPT. Hence, by repeating this local replacement argument a finite number of times we
get an optimal tour that does not visit any edge more than twice. Consequently, there is an
optimal strategy that usessomedepth first traversal. By noting that the caching strategies
used at various subtrees of a node are independent, one can see that the optimal solution
may useanydepth first search traversal.

LEMMA 3. For Web Caching on depth first tree traversals in the cost model, and for
Site Search in the cost model, OPTk(T)/t (T) ≤ n1/(k+1) + 1 holds for any tree T with n
nodes.

PROOF. We only prove the statement on Web Caching. By Lemma 2, this also yields
the statement for Site Search. We now describe an offline algorithm KNOWS for Web
Caching such that KNOWS(T) ≤ (n1/(k+1) + 1)t (T). The following recursive procedure
takes as parameters a treeT , an upper boundn on the number of nodes in this tree, and
the numberk of cache locations available for traversingT .

KNOWS(n, k, T). The procedure follows the request sequence throughT , starting at
the rootpr . Let ps be some child ofpr , and consider the moment in time just afterpr

has been requested and just beforeps is to be requested. If the number of nodes inTs is
at mostnk/(k+1), thenpr is cached, and the recursive call KNOWS(nk/(k+1), k− 1, Ts) is
made. If the number of nodes inTs is more thannk/(k+1), thenpr is not cached, and the
recursive call

We now argue that the total access time of KNOWS(n, k, T) is at most(n1/(k+1) +
1)t (T). The proof is by induction onk and the heighth of the tree. Notice that the
bound follows easily fork = 0 orh = 1. By induction, we assume that the bound holds
wheneverk ≤ i − 1 ork = i andh ≤ j − 1. We will prove that the bound also holds for
k = i andh = j . Consider an arbitrary treeT of height j . Let pr be the root ofT and
let T1, T2, . . . , Tm be the subtrees rooted at the children ofT . We say that a subtreeTa



360 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

is heavyif Ta has at leastnk/(k+1) nodes. Note that at mostn1/(k+1) of the treesTa with
1≤ a ≤ m are heavy. As a consequence, the total access time incurred on pagepr is at
most(n1/(k+1)+1)t (r ), where the 1 accounts for the first request topr . By induction, the
total access time incurred for traversing a heavy subtreeTa is at most(n1/(k+1)+1)t (Ta).
By induction, the total access time incurred for traversing a non-heavy subtreeTa is
at most(nk/(k+1) + 1)1/kt (Ta) ≤ (n1/(k+1) + 1)t (Ta). Hence, the total access time for
KNOWSin Tr is at most(n1/(k+1) + 1)t (Tr ).

We now give an optimal offline algorithm for Site Search on trees and for Web Caching
on depth first tree traversal sequences in the general model. Letpr be a node inT with
children pc1, . . . , pcm. If s(r ) > k, then obviously

OPTk(Tr ) = t (r )+
m∑

i=1

[OPTk(Tci )+ t (r )].

So now consider the case thats(r ) ≤ k. We say thatpci is cheap if OPTk−s(r )(Tci ) −
OPTk(Tci ) < t (r ), and otherwise we say thatpci is expensive. It easy to see that one
should cachepr before visiting a cheap childpci since the time savings from having
additionals(r ) cache is less than the access time forpr . Similarly, one should not cache
pr before visiting an expensive childpci since one can reap a time savings of more than
t (pr ) by having additionals(r ) cache during the traversal ofTci . Hence,

OPTk(Tr ) = t (r )+
∑

cheappci

OPTk−s(r )(Tci )+
∑

expensivepci

[OPTk(Tci )+ t (r ))].

The obvious dynamic programming implementation of this recurrence runs in time
O(kn). Summarizing, this dynamic program yields a pseudo-polynomial-time algorithm
for Web Caching of tree traversal input sequences in the bit model and in the general
model, and a polynomial-time algorithm for the cost model.

3. Bit Model. The algorithm Least Recently Used (LRU) evicts the least recently used
items until there is room to fit the most recently requested item in the cache. We show that
in the bit model the online algorithm LRU is(1+1/ε)-competitive against an adversary
with unbounded cache as long as LRU has a cache of size at least(1+ ε)L. RecallL is
the size of the largest item in the input sequence.

THEOREM4. Suppose0 < ε ≤ 1 and thatLRU is equipped with a cache of size k≥
(1+ε)L.Then for Web Caching in the bit model where the input sequence S is a depth first
traversal of some tree T, the algorithmLRU guarantees thatLRU(S)/t (T) ≤ 1+ 1/ε.

PROOF. We split the cost of LRU into the cost incurred while moving downwards (from
a parent down to a child) and the cost incurred while moving upwards (from a child up
to its parent). We show by an amortization argument, that the total cost for upward
moves is at mostt (T)/ε. There is an account ACCi associated with each pagepi , and
there is an account ACC(LRU) for LRU. Initially, ACCi = t (i )/ε for each pagepi and



Caching for Web Searching 361

ACC(LRU) = 0. When a pagepi is requested in a downward move, all accounts remain
unchanged. When a nodepi is requested in an upward move andpi is not cached, then
t (i ) is deducted from ACC(LRU). If the request sequence is next going to visit another
child of pi , then all the funds in ACC(LRU) are moved to ACCi , and LRU enters this
subtree with an empty account. Otherwise, if the request sequence returns topi ’s parent,
then all the funds in ACCi are transferred to ACC(LRU).

Our first goal is to show that during an upward move from a nodepi towards
its parent, ACC(LRU) ≥ min(t (Ti )/ε, L) always holds. The proof is done by induc-
tion. The base case is ifpi is a leaf. In this case the account ofpi with value t (i )/ε
has just been transferred to LRU, and thus ACC(LRU) ≥ t (i )/ε = t (Ti )/ε holds.
Next assume that the claim holds for each of the childrenpc1, . . . , pcm of pi . We
break the proof into two cases: (Case 1) First, assume that for allj , 1 ≤ j ≤ m,
t (Tcj ) ≤ εL holds. Then everyTcj can be traversed without evictingpi , and pi will
be kept cached throughout the traversal ofTi . Since no charges are deducted from
the searchers account atpi , the inductive claim yields that ACC(LRU) ≥ t (i )/ε +∑m

j=1(t (Tcj )/ε) = t (Ti )

ε
holds at the moment when LRU leavespi upwards to its par-

ent. (Case 2) Now assume that there exists aj , 1 ≤ j ≤ m, with t (Tcj ) > εL and
consider the moment in time when the searcher returns frompcj up to pi . At this
moment, pi need not be in the cache. By induction, the value of ACC(LRU) is at
leastL = min(t (Tcj )/ε, L). Hence, after (possibly) paying the charge for visitingpi ,
ACC(LRU) ≥ L − t (i ) holds. If the request sequence now returns topi ’s parent, then
ACC(LRU) ≥ (L − t (i )) + t (i )/ε ≥ L (where the second term is the original amount
in ACCi ). Otherwise, if the request sequence moves on to the next child ofpi , then
ACC(LRU) ≥ L − t (i ) will be added to ACCi and so ACCi ≥ (L − t (i ))+ t (i )/ε ≥ L
and this amount will eventually be transferred to ACC(LRU) before it moves up topi ’s
parent.

Next, we argue that ACC(LRU) is never negative, and that therefore LRU can always
pay for the revisits. Consider visiting a parentpi from a child pc. If t (Tc) ≤ εL, then
pi is still cached at this moment and no charge is taken. Otherwise, ift (Tc) > εL, then
ACC(LRU) ≥ L and LRU can afford the charge sincet (i ) ≤ L by the definition of
L. Summarizing, the account of LRU stays non-negative throughout the traversal of the
tree. Since the total amount of funds available in the beginning ist (T)/ε and since LRU
is able to finance all its upward moves from these funds, the total incurred cost indeed is
at mostt (T)/ε. Since the total cost of LRU for downward moves equalst (T), the proof
of the theorem is complete.

This corollary is an immediate consequence of Theorems 1 and 4.

COROLLARY 5. For Site Search in the bit model, the algorithm that usesLRU and a
depth first traversal guarantees thatLRU(S)/t (T) ≤ 1+ 1/ε.

It is easy to see that the above bounds are tight forε = 1 by considering trees where
each internal node has one child, and all pages have access timeL. Note that in Site
Search this is not merely an artifice of our requirement that the searcher return to the root
as you could always enforce this condition by adding a second leaf-child of the root.



362 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

4. Lower Bounds in the General Model. We show that in the cost model (and hence
also in the general model) every online algorithm for Web Caching and every online
algorithm for Site Search requires a cache of sizeÄ(L logn) in order to be constant
competitive.

THEOREM6. For Web Caching in the cost model, any deterministic online algorithm
A fulfills the following statements:

(i) Let k and n be integers such that k+ 1≤ lg n. Then there exists a tree T with2(n)
nodes on which A isÄ(min(k+ 1,n1/(k+1)))-competitive.

(ii) Let k and n be integers such that k+ 1≤ lg n. Then there exists a tree T with2(n)
nodes such that A(T)/t (T) ≥ 1

4n1/(k+1).

PROOF. The adversary constructs a treeT with k+ 2 levels numbered 0,1, . . . , k+ 1.
Level 0 only contains the root ofT , level 1 contains all the children of the root, and so
on. Every page at level̀has access timexk+1−`, wherex = 1

2n1/(k+1). Note thatx ≥ 1
sincek+1≤ lg n. Hence, every node has access time at least one. The exact shape ofT
is determined by the adversary in dependence on the behavior of the online algorithmA.
The adversary follows a simpleHit-Where-It-Hurtsstrategy. Letp be the last requested
page, and let̀ be the level that containsp.

Expand: If ` < k+ 1, then the adversary creates a path ofk+ 1− ` new pages at
levels`+ 1, . . . , k+ 1 that are descendants of pagep. The pages on this path are
then requested one by one.
Hit: Otherwise,̀ = k + 1 holds. The adversary requests the ancestors ofp until
it reaches a page that is currently not cached by the online algorithm.

The adversary alternates between expansions and hits until it has createdn nodes (if this
happens in the middle of an expansion or hit, this move is still completed and then the
process stops). Clearly, the thus created treeT has2(n) nodes. Byn`, 0≤ ` ≤ k + 1,
we denote the total number of nodes at the`th level of treeT . Note thatn0 = 1.

Now let p be a page at level̀≤ k with m children. Since all leaves ofT are at level
k + 1, m ≥ 1 holds. When the online algorithm pays for accessingp, then either the
adversary is expanding the tree (andp is created) or the adversary is hitting (and the
request sequence returns from one of themchildren). When the request sequence returns
from one of the firstm−1 children, the adversary has just done a hit. The online algorithm
pays for accessingp, and then the next child is created in the following expansion. When
the request sequence returns from the last child, it immediately moves on to the parent of
p and we are in the middle of some hit. Altogether, for accessing pagep, the algorithm
A paysm times the size ofp, and for all the accesses to all the pages in level`, it pays
the total numbern`+1 of their children times their access timexk+1−`. For the pages in
levelk+ 1, A altogether paysnk+1 times access time 1. Summarizing, this yields

A(T) = nk+1+
k∑
`=0

n`+1xk+1−` ≥ xt(T)− xk+2(1)

= x
(
t (T)− n

2k+1

)
≥ x

2
t (T).



Caching for Web Searching 363

In the last inequality, we used thatt (T) ≥ n. This inequality holds since every node has
access time at least 1.

One possible offline strategy always keeps all the predecessors of the currently re-
quested page in cache, with the exception of the pages at some fixed levelλ with
0 ≤ λ ≤ k. SinceT has onlyk + 2 levels and since there is no need to cache the
pages at levelk+ 1, this strategy can always be carried out with a cache of sizek. This
offline strategy has to pay for accessing a page (a) if the page is requested for the first
time, or (b) if the page is at levelλ and if the request sequence moves from a page at level
λ+1 up to levelλ. The total cost for (a) ist (T), and the total cost for (b) isnλ+1xk+1−λ.
Hence, OPT(T) ≤ t (T)+mink

λ=0{nλ+1xk+1−λ}, and a simple averaging argument yields

OPT(T) ≤ t (T)+ 1

k+ 1

k∑
`=0

n`+1xk+1−` ≤ t (T)+ 1

k+ 1
x · t (T).(2)

By combining (1) and (2), we conclude that the competitive ratio ofA is at least

A(T)

OPT(T)
≥ (k+ 1)x · t (T)

2(k+ 1+ x)t (T)
= (k+ 1)x

2(k+ 1+ x)
.(3)

Now we prove statement (i) of the theorem. Ifk+ 1≤ n1/(k+1), thenk+ 1≤ 2x and we
derive from (3) that

A(T)

OPT(T)
≥ (k+ 1)x

2(k+ 1+ x)
≥ (k+ 1)x

6x
= 1

6(k+ 1).

If on the other handk + 1 ≥ n1/(k+1) holds, thenk + 1 ≥ x and we derive in a similar
way that

A(T)

OPT(T)
≥ (k+ 1)x

2(k+ 1+ x)
≥ (k+ 1)x

4(k+ 1)
= 1

8n1/(k+1).

This proves (i). Finally, statement (ii) follows from the inequality in (1) and fromx =
1
2n1/(k+1). With this, the proof of the theorem is complete.

Now we turn to the Site Search problem. We know from Theorem 1 that without loss of
generality (and up to constant factors) we only need to consider online algorithmsA that
traverse some subtreeT of G. However, we do not necessarily know thatA performs
a depth first traversal ofT . To get around this difficulty, we consider the following
Modified Site Search problem. It is easy to see that a lower bound on the competitive
ratio for any online algorithm for Modified Site Search also yields a lower bound on the
competitive ratio for any online algorithm for the original Site Search problem.

MODIFIED SITE SEARCH PROBLEM. The online algorithm is told that the topology of
G consists of a directed treeT , rooted at the initial page with the edges directed away
from the initial page, and edges directed from a secret pageps to every other page. The
online algorithm is toldT a priori, but is not told the identity of the secret nodeps (and,
actually, the adversary will makeps the last node that the online algorithm visits). The
goal of the online algorithm is still to visit all the nodes and to return to the initial page.



364 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

Recall that OPTk(T) is the minimum access time strategy, with cache sizek, for
visiting all the nodes inT and returning to the root ofT . Also recall that by Lemma 2 we
may assume that OPTk(T) uses a depth first search. Note that OPTk(T) can be computed
by the online algorithm before it begins its traversal. The competitive ratio of any online
algorithm for Modified Site Search is thenÄ(maxT (OPTk(T)/t (T))). We show that
maxT (OPTk(T)/t (T)) is at leastÄ(max(1/k, k/ logn)n1/(k+1)).

THEOREM7. For Modified Site Search, the competitive ratio of every deterministic
online algorithm A is at leastÄ(max(1/k, k/ logn)n1/(k+1)).

PROOF. We assume thatn andk are integers such that(k + 1) ≤ lg n, otherwise the
claimed lower bound ofÄ(1) is trivial. We now construct a directed rooted treeT , the
edges pointing away from the root, that depends onn, k, and a parametery. Here y
is a non-negative integer such thatd := dn1/(k+1+y)e ≥ 2 holds; the exact value ofy
will be fixed later. Every non-leaf node inT has out-degreed. The number of nodes in
any root to leaf path isk + y + 2. We consider the root to be on level 0, its immediate
children to be on level 1, and so on; all leaves are at levelk+ y+ 1. Each node on level
`, 0≤ ` ≤ k + y+ 1, has access timed−`. Note that the number of nodes at level` is
d`, that the total number of nodes inT is2(n), and thatt (T) = k+ y+ 2.

Our first claim is that OPTk(T) ≥ (y+1)d. To prove this claim, we associate with each
leaf node a penalty account that is initialized with 0. The sum of the penalty accounts
will be a lower bound on OPTk(T). Consider an arbitrary nodepa on level` and some
child pb of pa. In casepa is not cached when the traversal returns frompb to pa, then
the costt (a) = d−` is equally split among all leaves in the subtreeTb. The number of
leaves in subtreeTb is dk+y−`. Therefore, the penalty account of each leaf inTb gets a
charge ofd−k−y which is independent of the level`. Now consider a leafpi and letN be
the set ofk+ y+2 nodes in the path from the root ofT to pi . At the time that OPTk visits
pi , at mostk nodes inN are cached and at leasty+ 1 nodes inN − {pi } are uncached.
Each uncached node will charged−k−y to the penalty account atpi , and so in the end
the penalty account atpi is at least(y + 1)d−k−y. Since the total number of leaves is
dk+y+1, we conclude that indeed OPTk(T) ≥ (y+ 1)d−k−y · dk+y+1 = (y+ 1)d.

Finally, we show that for a proper choice ofy, OPTk(T)/t (T)=Ä(max(1/k, k/ logn)
n1/(k+1)). Then by Theorem 1 the desired bound follows. Ifk ≤ √lg n, we sety = 0.
Then by the above discussion, OPTk(T) ≥ d andt (T) = k+ 2, and the claim holds. In
the remaining casek >

√
lg n, and we sety = (k + 1)2/ lg n. Note thaty ≤ (k + 1)

since(k+ 1) ≤ lg n by assumption. Since OPTk(T) ≥ (y+ 1)d andt (T) = k+ y+ 2,
the ratio OPTk(T)/t (T) is at least

y+ 1

k+ y+ 2
n1/(k+y+1) ≥ y

4(k+ 1)
n1/(k+y+1) ≥ k+ 1

4 lgn
n1/(k+y+1).

Hence, we are left to verify that the ration1/(k+y+1)/n1/(k+1) is Ä(1). However, that
follows easily, since the exponent fulfills

1

k+ y+ 1
− 1

k+ 1
= −y

(k+ y+ 1)(k+ 1)
= −1

lg n+ k+ 1
≥ −1

lg n
.



Caching for Web Searching 365

COROLLARY 8. For Site Search in the cost model, the competitive ratio of every deter-
ministic online algorithm A is at leastÄ(max(1/k, k/ logn)n1/(k+1)).

5. Analysis of Landlord. We show that for Web Caching on depth first tree traversal
sequences and for Site Search, Landlord is constant competitive against an adversary
with unbounded cache if Landlord has a cache large enough to hold at least logn pages.

LANDLORD DESCRIPTION[5]. The algorithm maintains a non-negative creditc(i ) for
each pagepi in the cache. Given a request forpi , if pi is in the cache the algorithm
resetsc(i ) to t (i ). Otherwise, the algorithm setsc(i ) = t (i ) and “pretends”pi is in the
cache. Then it repeats the following eviction step while the total size of the items in the
cache exceedsk.

Eviction step: Let pm be a page in the cache that minimizes the ratioc(m)/s(m) and let
δ = c(m)/s(m). For everypi in the cache, the algorithm decreasesc(i ) by δs(i ), and
then evictspm.

PROPOSITION9 [5], [15]. For Web Caching in the general model, Landlord is (k +
1)/(k− h+ 1)-competitive against an adversary with a cache of size h≤ k.

THEOREM10. For Site Search in the cost model, the online algorithm that uses depth
first search for traversing andLandlordfor caching is

(i) O(kn1/(k+1))-competitive if k≤ √logn,
(ii) O((logn/k)n1/(k+1))-competitive if

√
logn < k < 1

2 logn,
(iii) O(1)-competitive if k≥ 1

2 logn.

PROOF. Let h be an integer in the range 0≤ h ≤ k. From Proposition 9, we know that
the competitive ratio of Landlord against an offline adversary with a cache of sizeh is at
most(k+1)/(k−h+1). From Lemma 3, we know that OPTh(T)/t (T) = O(n1/(h+1)).
Therefore, the competitive ratio of Landlord isO(mink

h=0((k+1)/(k−h+1))n1/(h+1)).
In case (i) we chooseh = k and get the desired bound. In case (ii) we seth =

bk− k2/ lognc. Note that 0≤ h ≤ k. Observe that in this case

k+ 1

k− h+ 1
n1/(h+1) ≤ 2k

k2/ logn
n1/(h+1) ≤ 2 logn

k
n1/(h+1).

Thus it is sufficient to establish thatn1/(h+1) = O(n1/(k+1)). Note that ifk ≥ √logn,
thenn1/k = 2(n1/(k+1)). The exponent of the ration1/h+1/n1/k fulfills

1

h+ 1
− 1

k
≤ logn

k logn− k2
− 1

k
= 1

logn− k
= O

(
1

logn

)
.

Hence,n1/h+1/n1/k indeed isO(1). Finally, in case (iii) we seth = b 1
4 lognc.

THEOREM11. For Web Caching in the cost model, Landlord is O(min(k, (logn/k)
n1/(k+1)))-competitive for k≤ 1

2 logn caches, and O(1)-competitive for k≥ 1
2 logn

caches.



366 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

PROOF. The result follows from Proposition 9 and Theorem 10.

6. Oblivious Algorithms for the Cost Model. We show that Least Frequently Evicted
(LFE) is essentially the best oblivious algorithm and that the algorithm for Site Search
that uses depth first and LFE is strongly competitive ifk = O(1). Recall that an oblivious
algorithm is one that ignores access times.

LFE DESCRIPTION. An eviction counte(pi ) is maintained for each pagepi . Initially
eache(pi ) = 0. Assume that the pagepr has just been requested at timeu. If this is not
the first time thatpr was requested, the pagepc requested at timeu−1 is decached ifpc

is in the cache (note thatpc is a child of pr ). As a consequence of this, LFE maintains
the invariant that all the pages that are in the cache are on the path from the root to the
last requested page. If the cache is not full just beforepr was requested, thenpr is added
to the cache. If the cache was full beforepr was requested, then LFE pretends thatpr

is in the cache and selects api in the cache that minimizese(pi ); in case of a tie,pi

is selected to the page closest to the root. Note that it may be the case thati = r . The
selected pagepi is then evicted ande(pi ) is incremented.

For fixedn andk, let γ = γ (n, k) be the smallest integer that satisfiesγ
(
γ+k
γ

) =
γ
(
γ+k

k

) ≥ n. Observe that

(k+ 1)

(
γ

k+ 1

)k+1

≤ γ
(

k+ γ
γ

)
≤ (k+ 1)

(
e(γ + k)

k+ 1

)k+1

.

Fork ≤ 1
4 logn, we haveγ = 2(kn1/(k+1)). We call a pagefat if it has at leastγ children,

and otherwise we call the pageskinny. Definea(k, `) as the minimum over all trees of
the number of distinct fat pages that must be requested before LFE, with a cache of size
k, causes the eviction count of some page to reachγ +`. We now state some preliminary
lemmas that are necessary for the analysis of LFE.

LEMMA 12. If 1≤ ` ≤ γ + 1, then a(k, `) ≥ (k+`−1
`−1

)
.

PROOF. We prove the claim by induction on pairs(k, `). For the base case we first show
that the claim holds ifk = 0 or ` = 1. First consider the case that` = 1. In this case
we want to show that there is at least one fat node. If the eviction count of some pagepi

reachesγ +1, thenpi must have at leastγ children, and hence be fat. Now consider the
case thatk = 0. Again we want to show that there is at least one fat node. If the eviction
count of some pagepi reachesγ + `, thenpi has at leastγ + `− 1 children. Hence,pi

is fat since by the assumptioǹ≥ 1.
We show that if the claim holds fora(k − 1, `) anda(k, ` − 1), then it holds for

a(k, `). Let pr be the first page whose eviction count reachesγ + `. Consider the time
u when pr ’s eviction count was incremented to(γ + `− 1). This happened after some
descendant ofpr (including possiblypr ) was requested. By the definition ofa(k, `−1),
at leasta(k, `− 1) distinct fat pages had been requested by timeu.



Caching for Web Searching 367

Now we show that at timeu it must be the case that no proper ancestor ofpr is in
the cache. Assume to reach a contradiction that an ancestorpg, pg 6= pr , of pr is in the
cache at timeu. We break the argument into cases:

• In first case assume thate(pg) ≥ γ+` at timeu. This would contradict the assumption
that pr is the first page whose eviction count reachesγ + `.
• In the second case assume thate(pg) = γ + ` − 1 at timeu. Let v be the time that

e(pr ) was incremented toγ + `. Then just before timev the pagepg must still be in
the cache, or its eviction count would have reachedγ + ` beforepr ’s count reached
γ +`, contradicting the choice ofpr . However, then, since LFE breaks ties by evicting
the page closer to the root,pg would be evicted instead ofpr at timev, which is a
contradiction.
• In the final case assume thate(pg) ≤ γ + ` − 2 at timeu. However, then since

e(pr ) = γ + ` − 2 just before timeu, and LFE breaks ties by evicting the page
closer to the root,pg would have been evicted at timeu instead ofpr , which is a
contradiction.

Now consider the timev whenpr is evicted ande(pr ) is incremented toγ + `. Let T
be the subtree ofpr that is being traversed at timev. Consider two successive evictions
of pr at timess andt . Thenpr must have been requested during the time interval [s, t ].
As a result at timeu the algorithm LFE could not yet have enteredT . By the above
argumentpr will be the lone page in cache when the root ofT is first requested. Notice
that from the time thatT is first entered until timev, LFE behaves onT exactly as ifT
was the original tree and LFE hadk−1 caches. Now consider the point in the algorithm
LFE at timev when LFE is pretending to add the(k+1)st page to cache; call thesek+1
pagespr , p1, . . . , pk, where the ordering is from the top of the tree to the bottom. We
already know thate(pr ) = γ + `− 1 just before the eviction at timev occurs. Each of
the otherpi , 1≤ i ≤ k, must havee(pi ) = γ + `−1 at this time because if the eviction
count of pi was larger it would contradict the choice ofpr , and if the eviction count
of pi was smaller it would contradictpr getting evicted at timev. Hence, if LFE was
given treeT as input it would evictp1 at timeu and incremente(p1) to γ + `. Hence,
by inductionT contains at leasta(k− 1, `) fat nodes. Therefore,

a(k, `) ≥ a(k, `−1)+a(k−1, `) ≥
(

k+ `− 2

`− 2

)
+
(

k+ `− 2

`− 1

)
=
(

k+ `− 1

`− 1

)
,

where the second inequality follows by induction.

LEMMA 13. For any z≥ 1, and for any rooted tree T with n nodes, there are at most
(n− 1)/z nodes in T that have z or more children.

PROOF. Note that the root is not a child of any node. Therefore there are at mostn− 1
children. Also note that each node is the child of at most one parent. Hence, there can
be at most(n− 1)/z nodes withz or more children.

THEOREM14. For Web Caching in the cost model, LFE is (2γ + 2)-competitive, and,
hence,2(kn1/(k+1))-competitive.



368 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

PROOF. We show that no page was missed more than(2γ + 2) times. If a page hasx
children, then it is requestedx+ 1 times. So a skinny page is requested at mostγ times,
and hence missed at mostγ times.

Assume to reach a contradiction that there is a fat pagepi that was missed 2γ + 2
times. Then at some timeu it must be the case thate(pi ) is incremented to 2γ + 1.
Let F(u) be the number of fat pages seen by LFE up until timeu. By the definition of
a(k, `), and by Lemma 12,

F(u) ≥ a(k, γ + 1) ≥
(

k+ γ
γ

)
.

Hence,

γ F(u) ≥ γ
(

k+ γ
γ

)
≥ n,

where the last inequality follows from the definition ofγ . However, by Lemma 13,
F(u) ≤ (n − 1)/γ , or equivalently,n − 1 ≥ γ F(u). Hence, we can conclude that
n− 1≥ F(u) ≥ n, which is a contradiction.

COROLLARY 15. For Site Search in the cost model, the algorithm that usesLFE and
depth first search is O(kn1/(k+1))-competitive.

We now show that every oblivious online algorithm for Web Caching isÄ(kn1/(k+1))-
competitive. Since any page could have non-zero access time while all other pages have
zero access time, anγ -competitive oblivious algorithm cannot miss any page more than
γ times.

THEOREM16. For Web Caching in the cost model, every deterministic oblivious online
algorithm is2(kn1/(k+1))-competitive.

PROOF. Let A be an arbitrary oblivious online algorithm. We recursively define an
adversarial strategy BAD(k, `, A) to construct a treeT that has the property that:

• If A uses at mostk caches during the traversal ofT , then there must a nodez in T that
A misses oǹ times.

Note that in this proof we do not consider the first visit of a node to be a miss. Since the
algorithm is oblivious, the result then follows if we set the access time ofz to be very
large and the access time of all other nodes to be 0.

We first consider the base cases. Ifk = 0, then the tree is a node with̀children.
Hence, every algorithm with no cache will miss on the root` times. If ` = 1, then the
tree is a line withk + 2 nodes. Then sinceA can only cachek of the topk + 1 nodes,
some page will be missed at least once when the input sequence is traversing back up
the tree.

We now consider the general inductive case. LetT1 be the tree constructed by
BAD(k, ` − 1, A). If A uses more thank cache locations to handleT1, thenT is set
to T1. ObviouslyT has the desired property sinceA uses more thank cache locations
on T = T1.



Caching for Web Searching 369

Otherwise, assume thatA uses at mostk cache locations while handlingT1. Then by
induction there must be some pagepr ∈ T1 that A misses on at least`− 1 times. LetT2

be the tree constructed by BAD(k− 1, `, A). The final treeT is then formed by making
the root ofT2 the last child ofpr in T1. We now argue thatT has the desired property.
If A used more thank cache locations to handleT , then the desired property obviously
holds. So assume thatA used at mostk cache locations to handleT . By induction we
conclude that eitherA usesk caches to handleT2, or there is a node inT2 that A misses
at least̀ times. First consider the case thatA usesk cache locations while traversingT2.
As a result, it must be the case thatpr is not in the cache when the depth first traversal
returns fromT2 to pr . Hence,pr will experience its̀ th miss at this time, and the desired
property holds. Now assume thatA uses at mostk − 1 cache locations to traverseT2.
Then by induction,A must miss some nodètimes inT2. Again the desired property for
T holds.

The remainder of the proof is very similar to Lemma 12. Defineb(k, `) to be the
number of distinct pages in the treeT constructed by BAD(k, `, A). We will now show
by induction that

b(k, `) ≤
(

k+ `+ 1

`

)
.

Note that by construction it is the case thatb(k,1) = k + 2 = (k+2
1

)
, andb(0, `) =

`+ 1= (`+1
`

)
. Also by construction,

b(k, `) ≤ b(k, `− 1)+ b(k− 1, `)

≤
(

k+ `
`− 1

)
+
(

k+ `
`

)
≤
(

k+ `+ 1

`

)
.

We now want to find the maximum̀− 1 such thatb(k, ` − 1) ≤ n. Instead it suffices
to find the minimum̀ such thatb(k, `) > n. In other words

n <

(
k+ `+ 1

`

)

<

(
e(k+ `+ 1)

k+ 1

)k+1

.

Observe that solving this inequality gives that` = Ä(kn1/(k+1)) for k ≤ (logn)/2.

References

[1] S. Albers, S. Arora, and S. Khanna, Page replacement for general caching problems,Proceedings of the
ACM/SIAM Symposium on Discrete Algorithms, pp. 31–40, 1999.

[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of reference,
Journal of Computer and System Sciences50, 244–258, 1995.



370 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

[3] P. Cao and S. Irani, Cost-aware WWW proxy caching algorithms,Proceedings of the USENIX Sympo-
sium on Internet Technologies and Systems, pp. 193–206, 1997.

[4] L. Catledge and J. Pitkow, Characterizing browsing strategies in the world wide web,Computer Networks
and ISDN Systems27, 1065–1073, 1995.

[5] E. Cohen and H. Kaplan, Caching documents with variable sizes and fetching costs: an LP based
approach,Proceedings of the ACM/SIAM Symposium on Discrete Algorithms, pp. S879–S880, 1999.

[6] J. D. Fix, R. E. Ladner, and A. LaMarca, Cache performance analysis of traversal and random accesses,
Proceedings of the ACM/SIAM Symposium on Discrete Algorithms, pp. 613–622, 1999.

[7] B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose, Strong regularities in world wide web surfing,Science
280, 95–97, 1998.

[8] S. Irani, Page replacement with multi-size pages and applications to web caching,Proceedings of the
ACM Symposium on Theory of Computing, pp. 701–710, 1997.

[9] B. Jiang, DFS-traversing graphs in a paging environment, LRU or MRU,Information Processing Letters
40, 193–196, 1991.

[10] B. Kalyanasundaram and K. Pruhs, Constructing competitive tours from local information,Theoretical
Computer Science130, 125–138, 1994.

[11] A. Karlin, S. Phillips, and P. Raghavan, Markov paging,Proceedings of the IEEE Symposium on
Foundations of Computer Science, pp. 208–217, 1992.

[12] D. Sleator and R. Tarjan, Amortized efficiency of list update and paging rules,Communications of ACM
28202-208, 1985.

[13] L. Tauscher and S. Greenberg, How people revisit web pages: empirical findings and implications for
the design of history systems,International Journal of Human-Computer Studies47, 97–137, 1997.

[14] N. Young, Thek-server dual and loose competitiveness,Algorithmica11, 525–541, 1994.
[15] N. Young, On-line file caching,Proceedings of the ACM/SIAM Symposium on Discrete Algorithms,

pp. 82–86, 1998.


