Algorithmica (2002) 33: 353-370 . .
DOI: 10.1007500453-001-0123-6 Al go rithmica

© 2002 Springer-Verlag New York Inc.

Caching for Web Searching
B. Kalyanasundararh,). Noga® K. R. Pruhst and G. J. Woegingér

Abstract. We study Web Caching when the input sequence is a depth first search traversal of some tree.
There are at least two good motivations for investigating tree traversal as a search technique on the WWW:
First, empirical studies of people browsing and searching the WWW have shown that user access patterns
commonly are nearly depth first traversals of some tree. Secondly (as we will show in this paper), the problem
of visiting all the pages on some WWW site using anchor clicks (clicks on links) and back button clicks—by
far the two most common user actions—reduces to the problem of how best to cache a tree traversal sequence
(up to constant factors).

We show that for tree traversal sequences the optimal offline strategy can be computed efficiently. In the
bit model, where the access time of a page is proportional to its size, we show that the online algorithm
LRU is (1 + 1/e)-competitive against an adversary withboundedache as long as LRU has a cache of
size at leas{1 + ¢) times the size of the largest item in the input sequence. In the general model, where
pages have arbitrary access times and sizes, we show that in order to be constant competitive, any online
algorithm needs a cache large enough to sfafl®gn) pages; hera is the number of distinct pages in the
input sequence. We provide a matching upper bound by showing that the online algorithm Landlord is constant
competitive against an adversary with an unbounded cache if Landlord has a cache large enough to store the
Q(logn) largest pages. This is further theoretical evidence that Landlord is the “right” algorithm for Web
Caching.

Key Words. Web Caching, Greedy-Dual-Size, Web searching, Landlord, Least recently used, LRU.

1. Introduction

1.1. Problem Statement and MotivationWeb Caching is the temporary local storage

of WWW pages by a browser for later retrieval. From the user’s point of view, the
primary benefit of caching is reduced latency, as the time to access locally stored objects
is minimal. We adopt the following standard general model of Web Caching [1], [5],
8], [15]:

WEB CACHING PROBLEM STATEMENT. The browser is given an online sequergef
page requests, where each page Shas a size(i) (say, in bytes) and an access time

1 The first and third authors were supported in part by NSF Grant CCR-9734927 and by ASOSR Grant
F49620010011. The second and fourth authors were supported by the START program Y43-MAT of the
Austrian Ministry of Science.

2 Computer Science Department, Georgetown University, Washington, DC 20057-1232, USA.
kalyan@cs.georgetown.edu.

3 Department of Mathematics, Technical University of Graz, Steyrergasse 30, A-8010 Graz, Austria.
{noga,gwoegdi@opt.math.tu-graz.ac.at.

4 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15260, USA. kirk@cs.pitt.edu.

Received November 5, 1999; revised September 19, 2000. Communicated by M. Goodrich.
Online publication March 25, 2002.

354 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

t(i) that is required ifp; is not cached. If the requested pages not in the cache (this

is called a cache miss), then the time to acqgsst(i). Otherwise, ifp; is in the cache
(this is called a cache hit), thgm may be accessed instantaneously. After the request
of pagep;, but before the next request, the algorithm may ¢detache any arbitrary
collection of pages and pu; in its cache. At no time can the aggregate sizes of the
pages in cache exceed the fixed cache lsiZéhe objective function is to minimize the
total access time.

Note that we adopt the non-forced caching model here, that is, the algorithm need not
cache an accessed page. The differences between the results for forced caching and for
non-forced caching models are negligible.

All of the previous work on Web Caching that we are aware of assumes that the
sequences may be arbitrary. In this paper we consider the case $Hata depth first
traversal of some tre€ of pages. (Note that this restriction on the input allows us to
obtain results that are stronger in a fundamental way.) We are motivated to consider this
problem for two reasons. The first reason is that empirical studies of people browsing
and searching the WWW have shown that user access patterns are commonly nearly
depth first tree traversals [4], [7], [13]. That is, people tend to visit new pages via an
anchor click (more than 50% of user actions are anchor clicks [4]), and to revisit pages
using the back button (more than 40% of user actions are back button clicks [4]). No
other action accounts for more than 2% of users’ actions [4]. Secondly, we show that the
problem of visiting all the pages on some WWW site using anchor clicks and the back
button essentially reduces to the problem of how best to cache a tree traversal sequence.
This may be viewed as providing theoretical justification for tree traversal as a search
technique on the WWW.

SITE SEARCH PROBLEM STATEMENT. Informally, the searcher starts at the home page
pr (say for example, www.microsoft.com) of some WWW site (say Microsoft's WWW
site) with unknown topology. The searcher’s goal is to visit every page reachable from
the home page using anchors and the back button. More formally, an online algorithm
starts at some node in an initially unknown directed gr@pticach node irG is a page

pi with sizes(i) and access timigi). We assume that every nodeGnis reachable from

the start page. When the online algorithm visits a npdé learnss(i), t(i), and the
names of each pagg such thai p;, p;) is a directed edge i6. If p; is notin the cache,

then the online algorithm must payi), otherwise the online algorithm pays nothing
for this visit. After visiting p;, the algorithm may decache any arbitrary collection of
pages and pup; in its cache. At no time may the aggregate sizes of the pages in the
cache exceeHl. After making its caching decision the online algorithm may make one
of two moves. First, it can pusfy onto a stackS, and then move to a pagg with

the property thatp;, p;) is an edge irG. Second, it can pop the top paggoff of S

and return top;. The online algorithm must visit every page and return to the initial
home pagep,. (Note that the requirement that the online algorithm return to the initial
page is for convenience. Dropping this requirement will only change the competitive
ratio by at most a factor of two.) The objective function is to minimize the aggregate
access time of those visits where the visited page was not cached at the time of the
visit.

Caching for Web Searching 355

Thus Site Search requires that the online algorithm must specify both a search
strategy and a caching strategy. We show that, without loss of generality, online al-
gorithms may restrict themselves to search strategies that traverse trees. That is, we
show that the competitive ratio of every online algoriténfior the Site Search Problem
is ®(maxrer, (A(T)/t(T))), whereT, is the collection of all directed rooted treesmon
nodes with edges directed away from the r@qfT) is the total access time for algorithm
A on the treeT assuming that it starts at the root Bf andt(T) = Zp,eT t(i) is the
aggregate access times of the nodeg.in

Note that there are some differences between Site Search on trees and Web Caching
on depth first tree traversal sequences. The online algorithm in Site Search may decide
how it will traverse the tre@ (this traversal need not be a depth first search traversal),
while the online algorithm for Web Caching does not have this power. In Site Search the
online algorithm learns the degree of a node when it visits that node, which is not the case
in Web Caching on depth first tree traversals. Most importantly, the competitive ratio for
an online algorithmA for Site Search on a tree compar&€T) against the aggregate
access times(T) of the pages ifT, while for Web Caching on depth first tree traversal
sequenceS of T, the competitive ratio compare¥ S) against the optimal offline cost.

We will show that the optimal offline cost may be much higher th@n.

There are three special cases of the caching models that have been studied previ-
ously [1], [8]. In thebit modelthe access time is assumed to equal the size of the page.
This model would be appropriate if the pages are large and the delay in the network is
small. In thecost modethe size of each page is one, while the access times are allowed
to be arbitrary. This is an appropriate model if the page sizes are roughly equal. For our
purposes in this paper, the cost model is really no easier for online algorithms than the
general model. In thault modelthe access time for each page is constant, while page
sizes may be arbitrary. In theniform modethe access time for each page is constant,
and the page sizes are constant.

Consider for the moment the fault model, where the input is a depth first search
traversal sequence of a tree withodes. If no cache is available, then the costis the sum
of the degrees of the nodes in the tree, which can easily be seento-b2 &ince each
edge is included twice, and a tree mmodes containe — 1 vertices. If an unbounded
cache is available, then the cosmnisince each page only faults on the first reference
to that page. Hence the fault model, and the uniform model, are not so interesting in
our setting since every online algorithm, without a cache, is 2-competitive against an
adversary with an unbounded cache.

Consider for the moment the uniform model on arbitrary inputs. It is well known that
the optimal offline algorithm always ejects the page that will be referenced farthest in the
future. Hence, the difficulty in the online setting is somehow to do reasonably well even
though one does not know when pages will be next referenced. In the seminal paper [12],
it is shown that both the algorithms First-In-First-Out (FIFO) and Least-Recently-Used
(LRU) are optimally competitive. Now consider the general model on arbitrary inputs.

In addition to wanting to keep pages that will be accessed in the near future, the caching
algorithm intuitively also wants to keep pages that are smaller (since they take up less of
the cache resource), and wants to keep pages that have high cost (since a fault on these
pages will be more expensive). Itis not obvious how one should resolve these competing
demands. Surprisingly, there is an algorithm, called Greedy-Dual-Size, which is in some

356 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

sense a generalization of LRU, and which is as competitive in the general model as
LRU is in the uniform model [3], [5], [15]. The down side to these results is that the
competitive ratios of Greedy-Dual-Size and LRU are linear in the size of the cache.
One of our goals here is to determine whether there are algorithms that perform better
than Greedy-Dual-Size and LRU if the input is restricted to depth first tree traversal
sequences (we find that essentially there are not). Another goal is to determine whether
better competitive ratios are obtained if the input is restricted to depth first search tree
traversals (we find that it depends on the relationship between the size of the tree and
the size of the cache).

1.2. Our Results Our results differ from prior work on caching in a fundamental way.
In particular, we bound the size of cache required by an online algorithm in order to
be constant competitive against an offline optimal algorithm that usesbounded
amount of cache.

In Section 2 we give the following foundational results. We show that the competitive
ratio of any online algorithm for Site Search@maxr<7, (A(T)/t(T))). We give a
pseudo-polynomial-time offline dynamic programming algorithm to compuwre &
whenSis a depth first tree traversal. This stands in contrast to offline Web Caching for
general sequences, where no pseudo-polynomial-time algorithm is known [1].

In Section 3 we investigate Site Search and Web Caching under the bit model. For
Web Caching, we show that the online algorithm LRWIst+ 1/¢)-competitive against
an adversary witinboundedache as long as LRU has a cache of size at [@ast)L,
whereL is the size of the largest item in the input sequence. Note that an algorithm with
unbounded cache only has to pay to access each item once; so another way to state this
result is that the total access time for LRU is at mdst 1/¢) times the aggregate access
times of the pages regardless of how often these pages are accessed. Similarly, for Site
Search we show that the online algorithm that uses a depth first traversal and LRU is
(1 + 1/¢)-competitive against an adversary with an unbounded cache as long as LRU
has a cache of size at leqdt+ ¢)L.

In Section 4 we give lower bounds on the competitive ratios for Web Caching
and Site Search in the cost model (obviously these also hold in the general model).
We first show a lower bound a® (min(k, n/&*1)) on the competitive ratio of any
deterministic online algorithm for Web Caching. We then show a lower bound of
Q(max(1/k, k/logn)n¥&+Dy on the competitive ratio of any deterministic online al-
gorithm for Site Search. We accomplish this by showing that::aOPTi(T)/t(T))
is Q(max(1/k, k/logn)n/®+Dy where @1 (T) is the optimal offline cost for Site
Search onl. Thus these results show that for both Web Caching and Site Search, an
online algorithm needs at least a logarithmically sized cache to be constant competitive.

In Section 5 we analyze the online algorithm Landlord (this algorithm is a gener-
alization of LRU and is also called Greedy-Dual-Size in the literature) [3], [5], [15].
Although we state all results in the cost model, the results hold for the general miodel if
is replaced b/L . We show that Landlord i©® (min(k, (logn)/k) n¥®+D)-competitive
for Web Caching on depth first tree traversal sequences. We also show that the online
algorithm that uses a depth first traversal and Landlo@iimin(k, (logn)/kyn¥ k+D).
competitive for Site Search. The proper way to interpret this result is that for both Site
Search and for Web Caching on tree sequences, Landlord is constant competitive against

Caching for Web Searching 357

an adversary with an unbounded cache if Landlord has a cache large enough to hold at
least logn pages. That is, a multiplicative increase in the number of pages only requires
an additive increase in cache size to remain competitive against an adversary with infi-
nite cache. Yet another way to interpret this result is that the number of pages that an
adversary has to use to fool Landlord is exponential in the cache size.

To date, Landlord appears to be the theoretical champion for Web Caching on arbitrary
sequences [3], [5], [15]. Sections 4 and 5 together show that even if Landlord is not the
theoretical champion for depth first tree traversal sequences, then at least it is not far away
from being the champion. That is, even if one was going to design an online algorithm
specifically for depth first tree traversal sequences, one could not do a whole lot better
than Landlord. We take this as further theoretical evidence that Landlord is the “right”
algorithm for Web Caching.

Notice that LRU is what we call aobliviousalgorithm, in that it ignores the access
times of the pages. In Section 6 we consider oblivious algorithms in the cost model. We
show that the online algorithm Least Frequently Evicted (LFE) is optimally competi-
tive among oblivious online algorithms for Web Caching on tree traversal sequences.
Furthermore, for Site Search we show that the online algorithm that uses a depth first
traversal and LFE is strongly competitivéki= O(1). An online algorithmA is strongly
competitive for a problemP if the competitive ratio ofA is at most a constant factor
worse than the competitive ratio of any other online algorithn#ofr his is in contrast
to Site Search in the cost model with= » (1), and to Web Caching in the cost model
over all ranges ok, where we show that there are no strongly competitive oblivious
algorithms.

1.3. Related Results We first discuss known results for offline Web Caching. Itis easy
to see that Web Caching in the bit model (and in the general model) is NP-hard in the
ordinary sense. In [8] polynomial-time offlin® (logk)-approximation algorithms are
given for the bit model and for the fault model. In [1] a polynomial-time offlDé&l)-
approximation is given, provided that the polynomial-time algorithm is given additional
O(L) cache, whert is the size of the largest page. Additionally in[1] a polynomial-time
offline O(log(k + L))-approximation algorithm is derived.

Next, we consider online Web Caching. The algorithm Greedy-Dual-Size is intro-
duced in [3], where it is shown to Becompetitive. Greedy-Dual-Size is a generaliza-
tion of the algorithm Greedy-Dual in [14] that is specific for the cost model. In [15]
it is shown that Greedy-Dual-Size (this paper introduces the name Landlord for this
algorithm) isk/(k — h + 1)-competitive against an adversary with cache kizssum-
ing forced caching. In [15] it is also shown that in some sense for most choides of
the retrieval cost is either insignificant or the competitive ratio is constant. In [5] it is
shown, using linear programming duality, that Greedy-Dual-Sigde+isl)/(k —h + 1)-
competitive against an adversary with cache $izessuming non-forced caching. In
[8] online randomizedD (Iog2 k)-competitive algorithms are given for the bit and fault
models .

Previous researchers have theoretically studied the caching problem with uniform
times and uniform sizes under particular input patterns. In [2] (and in several follow-up
papers) the input is assumed to be a walk in a graph, and in [11] the input is assumed to
be the output of a Markov chain. In [9] it is shown that if the input sequence is a depth

358 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

first traversal of a tree, then LRU will haven2- k cache misses, and that LRU always
performs better than Most Recently Used on depth first traversal sequences.

In [6] the direct-mapped caching problem was studied with sequential access se-
quences. Perhaps the most closely related result to the search part of Site Search is in
[10]. Recasting the results from a geometric setting to the Site Search setting, it is shown
in [10] that there is an online algorithm that is constant competitilke=fO, G is planar,
and the edge relation i@ is symmetric.

2. Foundational Results

THEOREM1. For Site Search in any mod@eneral cost or bit), the competitive ratio
of every deterministic online algorithm A@&(maxr<z, (A(T)/t(T))).

PROOF The competitive ratiois at most maxg, (A(T)/t(T)), since the online searcher
may perform a depth first traversal of the site and the offline searcher has to access every
page at least once.

To see why the competitive ratio is at Ie$maxr67n(A(T)/t(T)), let T be an
arbitrary directed rooted tree annodes with all edges directed away from the root.
Let p, be the last page il visited by A. Create a directed gragh that includes each
directed edge ifT and directed edges going fropy, to every other node if. Then
A’s actions onG are identical toA’s actions onT until p, is visited. Fromp,, A may
return directly to the root; hencé(G) > %A(T). The offline adversary may visit all of
G incurring cost at mostt2T) by traversing the shortest path from the rooptg then
visiting each remaining unvisited node in a hub and spoke pattern frgrand then
backing up to the root. O

For an instanc@ € 7, of Site Search, we definer@(T) to be a minimum access
time strategy for visiting all the nodes ihand returning to the root af assuming that
the cache size ik. We show for Site Search on trees that the optimal offline algorithm
may use any depth first search that it likes. Note that this in no way implies that the
optimally competitiveonline algorithm uses depth first search.

LEMMA 2. For every depth first traversal S of a treg there is an optimal Site Search
strategy that uses S to traverse the tree T

PrROOF First notice that ®T never profits from caching a noge and then decaching
pi before it is accessed again. Secondly, we may assume without loss of generality that
OpT always decaches a nogeat the time that it returns tp;’s parent inT.

We first prove by a local replacement argument that there is an optimal strategy that
usessomedepth first search. L€L; be a subtree that is visited twice from's parent
pr. Assume that the sequence of nodes visited by i®

aPr PeBPcPry Pr PedPcPre,

wherea, 8, v, 8, ande are subsequences of nodes. We consider two cases.

Caching for Web Searching 359

In the first case we assume thaptChad more cache unfilled aftemp, than after
apr PeBPePryPr- In this case we modify the strategy to get a new strategy Oy
letting the sequence of pages be

aPr PeBPcSPcPry Pre.

The caching strategy byr@ within the subsequences,, p.8, PcdpPe, Pry, andpr ¢ is
the same as used byr@within these subsequences.

In the second case we assume that @ad no more cache unfilled aftep; than
afterapr pcBpcpr ¥ pr . In this case we modify the strategy to get a new strategy by
letting the sequence of pages be

apry Pr PeBPSPPr €.

The caching strategy byr@ within the subsequences p;y, pr pc8, Pcs, andp;e is
the same as used byr@within these subsequences.

Its easy to see that in both cases the total access timerdri©at most the total
access time for ©r. Notice also that there are strictly fewer pages accessedintian
OPT. Hence, by repeating this local replacement argument a finite number of times we
get an optimal tour that does not visit any edge more than twice. Consequently, there is an
optimal strategy that usesmedepth first traversal. By noting that the caching strategies
used at various subtrees of a node are independent, one can see that the optimal solution
may useanydepth first search traversal. O

LEmMmMA 3. For Web Caching on depth first tree traversals in the cost maal for
Site Search in the cost mod@pPT(T)/t(T) < n¥&+D 4 1 holds for any tree T with n
nodes

PROOF We only prove the statement on Web Caching. By Lemma 2, this also yields
the statement for Site Search. We now describe an offline algoritkowis for Web
Caching such that Kows(T) < (n¥®+D 4 1)t(T). The following recursive procedure
takes as parameters a trfegan upper bound on the number of nodes in this tree, and
the numbek of cache locations available for traversifg

KNows(n, k, T). The procedure follows the request sequence thrdugstarting at
the rootp;. Let ps be some child ofp;, and consider the moment in time just affgr
has been requested and just befpgés to be requested. If the number of nodeJdris
at most¥/®+D thenp, is cached, and the recursive cab&ws(n/®+D k — 1, Ty) is
made. If the number of nodes T is more tham*/®*V thenp is not cached, and the
recursive call

We now argue that the total access time ofdkvs(n, k, T) is at most(n¥/&+D 4
1t(T). The proof is by induction otk and the heighh of the tree. Notice that the
bound follows easily fok = 0 orh = 1. By induction, we assume that the bound holds
whenevek <i —1ork =i andh < j — 1. We will prove that the bound also holds for
k =i andh = j. Consider an arbitrary trek of heightj. Let p, be the root ofT and
let Ty, T, ..., Ty be the subtrees rooted at the childrerfofWe say that a subtrek

360 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

is heavyif T, has at leash/®*D nodes. Note that at most/*+D of the treesT, with

1 < a < mare heavy. As a consequence, the total access time incurred oppisgpt
most(n®*+D 4 1)t (r), where the 1 accounts for the first requesptoBy induction, the
total access time incurred for traversing a heavy sulfiyégat mosin® ®+D 4 1)t (Ty).

By induction, the total access time incurred for traversing a non-heavy subtrise
at most(n¥/®+D 4+ HVkt(T,) < (nV/&+D 4 1)t(T,). Hence, the total access time for
KNowsin T, is at mostnY/ &b 4+ 1)t(T;). O

We now give an optimal offline algorithm for Site Search on trees and for Web Caching
on depth first tree traversal sequences in the general modg, lbet a node inT with
childrenp,, ..., pg,. If s(r) > k, then obviously

OPT(Ty) =t(r) + Y [OPT(Tg) +t(r)].
i=1

So now consider the case trs(t) < k. We say thatp; is cheap if ®@Ty_s¢)(Tg) —
OPT(Tg) < t(r), and otherwise we say tha@t, is expensive. It easy to see that one
should cachey, before visiting a cheap chil@ since the time savings from having
additionals(r) cache is less than the access timegarSimilarly, one should not cache
pr before visiting an expensive chilg, since one can reap a time savings of more than
t(pr) by having additionas(r) cache during the traversal ©f . Hence,

OPTi(T) =tM) + Y OPTksr(Te)+ Y, [OPT(To) +t()].

cheapp expensivep

The obvious dynamic programming implementation of this recurrence runs in time
O(kn). Summarizing, this dynamic program yields a pseudo-polynomial-time algorithm
for Web Caching of tree traversal input sequences in the bit model and in the general
model, and a polynomial-time algorithm for the cost model.

3. BitModel. The algorithm Least Recently Used (LRU) evicts the least recently used
items until there is room to fit the most recently requested item in the cache. We show that
in the bit model the online algorithm LRU {4 + 1/¢)-competitive against an adversary
with unbounded cache as long as LRU has a cache of size atleas)L. RecallL is

the size of the largest item in the input sequence.

THEOREM4. Supposé < ¢ < 1 and thatLRU is equipped with a cache of sizexk
(14¢)L. Thenfor Web Caching in the bit model where the input sequence S is a depth first
traversal of some tree ;the algorithmLRU guarantees thatRU(S)/t(T) < 1+ 1/e.

PrOOF We split the cost of LRU into the cost incurred while moving downwards (from
a parent down to a child) and the cost incurred while moving upwards (from a child up
to its parent). We show by an amortization argument, that the total cost for upward
moves is at most(T)/e. There is an account@g associated with each page, and
there is an account@c(LRU) for LRU. Initially, AcG = t(i)/e for each pagey and

Caching for Web Searching 361

Acc(LRU) = 0. When a page; is requested in a downward move, all accounts remain
unchanged. When a nogt is requested in an upward move apds not cached, then
t(i) is deducted from Ac(LRU). If the request sequence is next going to visit another
child of p;, then all the funds in Ac(LRU) are moved to AG, and LRU enters this
subtree with an empty account. Otherwise, if the request sequence retpyisgtarent,
then all the funds in Ag are transferred to éc(LRU).

Our first goal is to show that during an upward move from a npdaowards
its parent, £c(LRU) > min(t(T;)/e, L) always holds. The proof is done by induc-
tion. The base case is ff is a leaf. In this case the account pf with valuet(i)/e
has just been transferred to LRU, and thuscA RU) > t(i)/e = t(T;)/e holds.
Next assume that the claim holds for each of the childpen..., ps, of pi. We
break the proof into two cases: (Case 1) First, assume that fgr, dll< | < m,
t(T;) < eL holds. Then evenyf can be traversed without evicting, and p; will
be kept cached throughout the traversalTof Since no charges are deducted from
the searchers account pt, the inductive claim yields that @c(LRU) > t(i)/e +
ijzl(t (Te)/e) = @ holds at the moment when LRU leavpsupwards to its par-
ent. (Case 2) Now assume that there exisfs & < j < m, with t(Tg) > L and
consider the moment in time when the searcher returns fpgnup to p;. At this
moment, p; need not be in the cache. By induction, the value aicARU) is at
leastL = min(t(T)/e, L). Hence, after (possibly) paying the charge for visiting
Acc(LRU) > L —t(i) holds. If the request sequence now returngte parent, then
Acc(LRU) > (L —t(i)) +t(i)/e = L (where the second term is the original amount
in AcG). Otherwise, if the request sequence moves on to the next chifg, dhen
Acc(LRU) > L —t(i) will be added to £¢ and so &g > (L —t(i)) +t(@i)/e > L
and this amount will eventually be transferred toddLRU) before it moves up te;’s
parent.

Next, we argue that &c(LRU) is never negative, and that therefore LRU can always
pay for the revisits. Consider visiting a pargntfrom a child p.. If t(T,) < ¢L, then
pi is still cached at this moment and no charge is taken. Otherwis@if > <L, then
Acc(LRU) > L and LRU can afford the charge sint@) < L by the definition of
L. Summarizing, the account of LRU stays non-negative throughout the traversal of the
tree. Since the total amount of funds available in the beginnib@iy/e and since LRU
is able to finance all its upward moves from these funds, the total incurred cost indeed is
at mostt (T)/e. Since the total cost of LRU for downward moves equéls), the proof
of the theorem is complete. O

This corollary is an immediate consequence of Theorems 1 and 4.

COROLLARY 5. For Site Search in the bit modehe algorithm that useeRU and a
depth first traversal guarantees tHaRU(S)/t(T) < 1+ 1/e.

It is easy to see that the above bounds are tight ferl by considering trees where
each internal node has one child, and all pages have access tidate that in Site
Search this is not merely an artifice of our requirement that the searcher return to the root
as you could always enforce this condition by adding a second leaf-child of the root.

362 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

4. Lower Bounds in the General Model. We show that in the cost model (and hence
also in the general model) every online algorithm for Web Caching and every online
algorithm for Site Search requires a cache of sé logn) in order to be constant
competitive.

THEOREM6. For Web Caching in the cost modany deterministic online algorithm
A fulfills the following statements

(i) Letk and n be integers such tha#tkl < Ign. Then there exists a tree T wi@(n)
nodes on which A i (min(k 4 1, n¥/&*+D))_-competitive

(i) Letk and n be integers such thatkl < Ign. Then there exists atree T wieh(n)
nodes such that @)/t(T) > znY/(+D.

PrOOF The adversary constructs a treavith k + 2 levels numbered.@, ..., k+ 1.
Level O only contains the root &f, level 1 contains all the children of the root, and so
on. Every page at levél has access time*1~¢, wherex = In¥/+1_ Note thatx > 1
sincek + 1 < Ign. Hence, every node has access time at least one. The exact sHape of
is determined by the adversary in dependence on the behavior of the online algarithm
The adversary follows a simpldit-Where-It-Hurtsstrategy. Letp be the last requested
page, and let be the level that containg.

Expand: If £ < k+ 1, then the adversary creates a path #f1 — ¢ new pages at
levels¢ + 1, ..., k+ 1 that are descendants of pageThe pages on this path are
then requested one by one.

Hit: Otherwisef = k + 1 holds. The adversary requests the ancestopsuoftil

it reaches a page that is currently not cached by the online algorithm.

The adversary alternates between expansions and hits until it has createées (if this
happens in the middle of an expansion or hit, this move is still completed and then the
process stops). Clearly, the thus created Trdes® (n) nodes. Byn,, 0 < £ < k + 1,
we denote the total number of nodes at £tielevel of treeT . Note thatng = 1.

Now let p be a page at level < k with m children. Since all leaves df are at level
k+ 1, m > 1 holds. When the online algorithm pays for accesginghen either the
adversary is expanding the tree (apds created) or the adversary is hitting (and the
request sequence returns from one ofithehildren). When the request sequence returns
from one of the firsin— 1 children, the adversary has just done a hit. The online algorithm
pays for accessing, and then the next child is created in the following expansion. When
the request sequence returns from the last child, it immediately moves on to the parent of
p and we are in the middle of some hit. Altogether, for accessing patiee algorithm
A paysm times the size op, and for all the accesses to all the pages in léyélpays
the total numben, ; of their children times their access tim&"1~¢. For the pages in
levelk + 1, A altogether paysg, 1 times access time 1. Summarizing, this yields

ng+1xk+17l > Xt(T) _ Xk+2

K
1) A(T) = Ny +

£=0

x(t(T)—%) > gt(T)-

Caching for Web Searching 363

In the last inequality, we used thiafT) > n. This inequality holds since every node has
access time at least 1.

One possible offline strategy always keeps all the predecessors of the currently re-
guested page in cache, with the exception of the pages at some fixed lexth
0 < X < k. SinceT has onlyk + 2 levels and since there is no need to cache the
pages at levek + 1, this strategy can always be carried out with a cache ofksizais
offline strategy has to pay for accessing a page (a) if the page is requested for the first
time, or (b) if the page is at leveéland if the request sequence moves from a page at level
1+ 1 up to levelr. The total cost for (a) is(T), and the total cost for (b) is, 1 x<t1-*.
Hence, ®T(T) < t(T)+ min'izo{nHlxk”**}, and a simple averaging argument yields

k
1
k+1—¢
2) OPT(T) < t(T) + m;nmx < t(T) + k_l_lx-t(T).

By combining (1) and (2), we conclude that the competitive ratié\id at least

A(M) (k+Dx - t(T) (k+)x

3) > = .
OPT(T) 2(k+ 14+ x)t(T) 2(k+1+x)

Now we prove statement (i) of the theoremk - 1 < n¥®+D thenk + 1 < 2x and we
derive from (3) that
AT _k+Dx (k£ Dx
OpPT(T) — 2(k+1+x) — 6X

= lk+.

If on the other han& + 1 > n¥&+D holds, therk + 1 > x and we derive in a similar
way that

AT Kk+Dx k+Dx 11/0+D)

OPT(T) ~— 2kk+1+x) — 4k+1 ’

This proves (i). Finally, statement (ii) follows from the inequality in (1) and frors
InY/(+D With this, the proof of the theorem is complete. O

ol

Now we turn to the Site Search problem. We know from Theorem 1 that without loss of
generality (and up to constant factors) we only need to consider online algovtimas
traverse some subtr@e of G. However, we do not necessarily know thaperforms
a depth first traversal of . To get around this difficulty, we consider the following
Modified Site Search problem. It is easy to see that a lower bound on the competitive
ratio for any online algorithm for Modified Site Search also yields a lower bound on the
competitive ratio for any online algorithm for the original Site Search problem.

MODIFIED SITE SEARCH PROBLEM. The online algorithm is told that the topology of
G consists of a directed trek, rooted at the initial page with the edges directed away
from the initial page, and edges directed from a secret |pade every other page. The
online algorithm is toldl' a priori, but is not told the identity of the secret nople(and,
actually, the adversary will makg; the last node that the online algorithm visits). The
goal of the online algorithm is still to visit all the nodes and to return to the initial page.

364 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

Recall that ®@T(T) is the minimum access time strategy, with cache &izéor
visiting all the nodes i and returning to the root &f. Also recall that by Lemma 2 we
may assume that@y (T) uses a depth first search. Note th&trdT) can be computed
by the online algorithm before it begins its traversal. The competitive ratio of any online
algorithm for Modified Site Search is the@(max; (OPT(T)/t(T))). We show that
max; (OPT(T)/t(T)) is at leas&2 (max(1/k, k/ logn)nY/ &+,

THEOREM7. For Modified Site Searchthe competitive ratio of every deterministic
online algorithm A is at leas® (max(1/k, k/ logn)n¥/&+D)_

PrOOF We assume that andk are integers such thg + 1) < Ign, otherwise the
claimed lower bound of2 (1) is trivial. We now construct a directed rooted trEgthe
edges pointing away from the root, that dependsipk, and a parametey. Herey

is a non-negative integer such titht= [n¥/&+14¥7 > 2 holds; the exact value of
will be fixed later. Every non-leaf node ih has out-degred. The number of nodes in
any root to leaf path i& + y + 2. We consider the root to be on level 0, its immediate
children to be on level 1, and so on; all leaves are at levely + 1. Each node on level
2,0 < ¢ <k+y+ 1, has access ting*. Note that the number of nodes at le¥ds

d¢, that the total number of nodes This ®(n), and that (T) = k + y + 2.

Ourfirstclaimisthat @1 (T) > (y+1)d. To prove this claim, we associate with each
leaf node a penalty account that is initialized with 0. The sum of the penalty accounts
will be a lower bound on @ (T). Consider an arbitrary nodg, on level¢ and some
child py, of pa. In casep, is not cached when the traversal returns frpgito p,, then
the costt(a) = d~* is equally split among all leaves in the subtfe The number of
leaves in subtre@, is d“tY—¢. Therefore, the penalty account of each leaTjrgets a
charge ofl =¥ which is independent of the levél Now consider a leaf; and letN be
the set ok + y+ 2 nodes in the path from the root dfto p;. At the time that ®@T visits
pi, at mostk nodes inN are cached and at leastt 1 nodes inN — {p;} are uncached.
Each uncached node will charge*~Y to the penalty account at, and so in the end
the penalty account gt is at least(y + 1)d—%~Y. Since the total number of leaves is
d“ty+1 we conclude that indeedr@ (T) > (y + 1)d =%V . dkt¥+1 = (y 4 1)d.

Finally, we show that for a proper choiceyfOpPT (T) /t(T) =Q (max(1/k, k/ logn)
nY&+Dy Then by Theorem 1 the desired bound followsk I£ ,/Ign, we sety = 0.
Then by the above discussionPQ(T) > d andt(T) = k + 2, and the claim holds. In
the remaining cask > ,/Ign, and we sey = (k 4+ 1)?/Ign. Note thaty < (k + 1)
since(k + 1) < Ign by assumption. Sincef(T) > (y+ 1)d andt(T) =k + y + 2,
the ratio T (T)/t(T) is at least

y+1 nlk+y+D S Y Vkiyn o K+ 1n1/(k+y+1)_
k+y+2 ~ 4k+1) ~ 4 gn

Hence, we are left to verify that the ratid/ ®tY+D /n/&+D s Q(1). However, that
follows easily, since the exponent fulfills
1 1 —y 1 -1

kty+tl k+1 (k+ty+Dk+1) Igntk+1 — ign

Caching for Web Searching 365

COROLLARY 8. For Site Search in the cost mod#ie competitive ratio of every deter-
ministic online algorithm A is at lease (max(1/k, k/lognynY/&+D),

5. Analysis of Landlord. We show that for Web Caching on depth first tree traversal
sequences and for Site Search, Landlord is constant competitive against an adversary
with unbounded cache if Landlord has a cache large enough to hold at leagidggs.

LANDLORD DESCRIPTION[5]. The algorithm maintains a non-negative creait) for

each page; in the cache. Given a request fpy, if p; is in the cache the algorithm
resetxc(i) tot(i). Otherwise, the algorithm setsi) = t(i) and “pretends’p; is in the
cache. Then it repeats the following eviction step while the total size of the items in the
cache exceeds

Eviction stepLet py, be a page in the cache that minimizes the rati) /s(m) and let
8 = c(m)/s(m). For everyp; in the cache, the algorithm decreaséy by és(i), and
then evictspp,.

PrROPOSITIONS [5], [15]. For Web Caching in the general moddlandlordis (k +
1)/(k — h + 1)-competitive against an adversary with a cache of sizek

THEOREM10. For Site Search in the cost mog#ie online algorithm that uses depth
first search for traversing antdandlordfor caching is

(i) O(knY&+Dy_competitive if k< /Togn,
(i) O((logn/k)n¥*+1)-competitive if/Togn < k < logn,
(i) O(1)-competitive if k> 3 logn.

PrROOF Leth be an integer in the range© h < k. From Proposition 9, we know that
the competitive ratio of Landlord against an offline adversary with a cache df &zt
most(k+1)/(k — h+ 1). From Lemma 3, we know thatr;,(T)/t(T) = O(n¥"+D),
Therefore, the competitive ratio of Landlord@mink_,((k +1)/(k — h 4 1))nY/"+Dy,

In case (i) we choosk = k and get the desired bound. In case (ii) we Iset
|k — k?/logn]|. Note that O< h < k. Observe that in this case

k+1 RV I 2 plhey 2 '09”n1/(h+1>
k—h+1 ~ k2/logn -k '

Thus it is sufficient to establish that/"D = O(n¥*+D), Note that ifk > ./logn,
thenn/k = ©(nY/*+D), The exponent of the ratio "1 /n¥/ fulfills

1 1 - logn 1 1 _ 0 1
h+1 k ~— klogn—k2 k logn—k logn)’
Hencen/"1/nYk indeed isO(1). Finally, in case (iii) we set = [3 logn]. O

THEOREM11. For Web Caching in the cost modélandlordis O(min(k, (logn/k)
n*&+Dy)-competitive for k< 3logn cachesand O(1)-competitive for k> 1logn
caches

366 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

PrROOFE The result follows from Proposition 9 and Theorem 10. O

6. Oblivious Algorithms for the Cost Model. We show that Least Frequently Evicted
(LFE) is essentially the best oblivious algorithm and that the algorithm for Site Search
that uses depth first and LFE is strongly competitike# O(1). Recall that an oblivious
algorithm is one that ignores access times.

LFE DESCRIPTION An eviction counte(p;) is maintained for each pagg. Initially
eache(p;) = 0. Assume that the pag® has just been requested at timdf this is not

the first time thatp, was requested, the pagerequested at time — 1 is decached i,

is in the cache (note thad; is a child of p;). As a consequence of this, LFE maintains

the invariant that all the pages that are in the cache are on the path from the root to the
last requested page. If the cache is not full just befpreras requested, then is added

to the cache. If the cache was full befquewas requested, then LFE pretends that

is in the cache and selectspain the cache that minimizex(p;); in case of a tiep;

is selected to the page closest to the root. Note that it may be the case-thatThe
selected page; is then evicted and(p;) is incremented.

For fixedn andk, lety = y(n, k) be the smallest integer that satisf'ge@}fk) =
(") = n. Observe that

k+1 k+1
14 k+y ey +Kk)
(k“rl)(m) f)/(y)f(k‘f‘l)(ﬁ) .

Fork < 7 logn, we havey = © (kn* D). We call a pagéatifit has atleasy children,

and otherwise we call the pagkinny Definea(k, ¢) as the minimum over all trees of

the number of distinct fat pages that must be requested before LFE, with a cache of size
k, causes the eviction count of some page to rea¢t. We now state some preliminary
lemmas that are necessary for the analysis of LFE.

LEMMA 12. If1<¢ <y +1,thenak, £) > (kfﬁl)-

PrROOE We prove the claim by induction on paits ¢). For the base case we first show
that the claim holds ik = 0 or £ = 1. First consider the case that= 1. In this case
we want to show that there is at least one fat node. If the eviction count of somepage
reaches + 1, thenp; must have at least children, and hence be fat. Now consider the
case thak = 0. Again we want to show that there is at least one fat node. If the eviction
count of some pagp; reachey + ¢, thenp; has at leasy + ¢ — 1 children. Hencep;
is fat since by the assumptidn> 1.

We show that if the claim holds faa(k — 1, ¢£) anda(k, £ — 1), then it holds for
a(k, £). Let pr be the first page whose eviction count reacpes ¢. Consider the time
u whenp;’s eviction count was incremented ¢ + ¢ — 1). This happened after some
descendant of; (including possiblyp;) was requested. By the definitionadk, £ — 1),
at leasta(k, ¢ — 1) distinct fat pages had been requested by time

Caching for Web Searching 367

Now we show that at time it must be the case that no proper ancestop,ois in
the cache. Assume to reach a contradiction that an anoggtpy # pr, of pr isin the
cache at timel. We break the argument into cases:

o Infirstcase assume thetpy) > y +¢ at timeu. This would contradict the assumption
that p; is the first page whose eviction count reaches ¢.

¢ In the second case assume te@ty) = y + £ — 1 at timeu. Let v be the time that
e(pr) was incremented tp + £. Then just before time the pagepy must still be in
the cache, or its eviction count would have reached ¢ beforep,’s count reached
y + £, contradicting the choice qf, . However, then, since LFE breaks ties by evicting
the page closer to the roagpy would be evicted instead gf; at timev, which is a
contradiction.

e In the final case assume thatpy) < y + ¢ — 2 at timeu. However, then since
e(pr) = y + £ — 2 just before timeu, and LFE breaks ties by evicting the page
closer to the rootpy would have been evicted at timeinstead ofp,, which is a
contradiction.

Now consider the time whenp is evicted ana(p,) isincremented tor + ¢. LetT
be the subtree of, that is being traversed at time Consider two successive evictions
of pr at timess andt. Thenp, must have been requested during the time intesyal [
As a result at timeu the algorithm LFE could not yet have enteréd By the above
argumentp; will be the lone page in cache when the rooflois first requested. Notice
that from the time thal is first entered until time, LFE behaves ol exactly as ifT
was the original tree and LFE h&d- 1 caches. Now consider the point in the algorithm
LFE at timev when LFE is pretending to add tiile+ 1)st page to cache; call theke- 1
pagespr, p1, - .., Pk, Where the ordering is from the top of the tree to the bottom. We
already know thae(p;) = y + ¢ — 1 just before the eviction at timeoccurs. Each of
the otherp;, 1 <i < k, must havee(p;) = y + £ — 1 at this time because if the eviction
count of p; was larger it would contradict the choice pf, and if the eviction count
of p; was smaller it would contradigh, getting evicted at time. Hence, if LFE was
given treeT as input it would evictp; at timeu and incremeng(p;) to y + £. Hence,
by inductionT contains at leasi(k — 1, ¢) fat nodes. Therefore,

k+¢—2 k+¢—2 k+¢-1
k k,¢—1 k—1 =
ak,¢) > ak,£—1)+a() z(/2)+((-1) ((-1)

where the second inequality follows by induction. O

LEMMA 13. Forany z> 1, and for any rooted tree T with n noddhkere are at most
(n—1)/z nodes in T that have z or more children

PrROOF Note that the root is not a child of any node. Therefore there are atrme4t
children. Also note that each node is the child of at most one parent. Hence, there can
be at mostn — 1)/z nodes withz or more children. O

THEOREM14. For Web Caching in the cost modé&FE is (2y + 2)-competitiveand
hence © (kn'/&*+D)-competitive

368 B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

PrROOFE We show that no page was missed more tt&an+ 2) times. If a page has
children, then it is requested+ 1 times. So a skinny page is requested at md#nes,
and hence missed at mgstimes.

Assume to reach a contradiction that there is a fat pagéat was missed2+ 2
times. Then at some time it must be the case tha{p;) is incremented to 2 + 1.
Let F(u) be the number of fat pages seen by LFE up until tim8y the definition of
a(k, £), and by Lemma 12,

Fw=>ak,y+1=> (kjy).

Hence,
k
yE(U) > y(”) >,
Y

where the last inequality follows from the definition pf However, by Lemma 13,
Fu) < (n—1)/y, or equivalentlyn — 1 > yF(u). Hence, we can conclude that
n— 1> F(u) > n, which is a contradiction. O

COROLLARY 15. For Site Search in the cost mogéhe algorithm that usekFE and
depth first search is kn¥«*D)-competitive

We now show that every oblivious online algorithm for Web Cachir@isn® k+1)-
competitive. Since any page could have non-zero access time while all other pages have
zero access time, gncompetitive oblivious algorithm cannot miss any page more than
y times.

THEOREM16. For Web Caching in the cost modelery deterministic oblivious online
algorithm is® (kn¥/«+D)-competitive

PROOF Let A be an arbitrary oblivious online algorithm. We recursively define an
adversarial strategyA® (k, ¢, A) to construct a tre@ that has the property that:

e If Auses at mod caches during the traversal ®f then there must a noden T that
A misses ort times.

Note that in this proof we do not consider the first visit of a node to be a miss. Since the
algorithm is oblivious, the result then follows if we set the access timetofbe very
large and the access time of all other nodes to be 0.

We first consider the base casesk & 0, then the tree is a node withchildren.
Hence, every algorithm with no cache will miss on the rbtimes. If ¢ = 1, then the
tree is a line withk + 2 nodes. Then sincA can only cach& of the topk + 1 nodes,
some page will be missed at least once when the input sequence is traversing back up
the tree.

We now consider the general inductive case. Tgtbe the tree constructed by
Bab(k, ¢ — 1, A). If A uses more thak cache locations to handlg, thenT is set
to T;. ObviouslyT has the desired property sinéeuses more thak cache locations
onT =T;.

Caching for Web Searching 369

Otherwise, assume thatuses at mogt cache locations while handlinfy. Then by
induction there must be some pagec T; that A misses on at leagt— 1 times. LefT,
be the tree constructed byaB(k — 1, ¢, A). The final tre€T is then formed by making
the root of T, the last child ofp; in T;. We now argue thal has the desired property.
If A used more thak cache locations to handTe, then the desired property obviously
holds. So assume th&t used at mosk cache locations to handle. By induction we
conclude that eitheA usesk caches to hand[&, or there is a node ifi, that A misses
at least times. First consider the case thatisesk cache locations while traversifg.
As a result, it must be the case thatis not in the cache when the depth first traversal
returns fromT, to p;. Hence,p; will experience itth miss at this time, and the desired
property holds. Now assume thAtuses at most — 1 cache locations to traverde.
Then by induction A must miss some nodgtimes inT,. Again the desired property for
T holds.

The remainder of the proof is very similar to Lemma 12. Detfixle, ¢) to be the
number of distinct pages in the tr@econstructed by Bo(k, £, A). We will now show
by induction that

b(k. o) < (k—i—ﬁ—i-l).

Note that by construction it is the case thek, 1) = k + 2 = (kf), andb(0, ¢) =
¢+ 1= (“}"). Also by construction,

b(k, £)

IA

bk, € — 1) + bk — 1, £)

(k—%ﬁ) (k—%ﬁ)
e—1) T ¢
(k+€+1)

< .

= ¢

We now want to find the maximumi— 1 such thab(k, £ — 1) < n. Instead it suffices
to find the minimuny such thab(k, £) > n. In other words

(k+£+1>
n < ,

ek + £ + 1)\
< s — .
k+1

Observe that solving this inequality gives tliat Q (kn/®*D) for k < (logn)/2. O

References

[1] S.Albers, S. Arora, and S. Khanna, Page replacement for general caching prdbiecegdings of the
ACM/SIAM Symposium on Discrete Algorithrpg. 31-40, 1999.

[2] A. Borodin, S. Irani, P. Raghavan, and B. Schieber, Competitive paging with locality of reference,

Journal of Computer and System Sciens@s244-258, 1995.

370

(3]
(4]
(3]
(6]
(71
(8]
9]
(20]
(11]
(12]
(13]

(14]
[15]

B. Kalyanasundaram, J. Noga, K. R. Pruhs, and G. J. Woeginger

P. Cao and S. Irani, Cost-aware WWW proxy caching algoritinsceedings of the USENIX Sympo-
sium on Internet Technologies and Systgpps 193-206, 1997.

L. Catledge and J. Pitkow, Characterizing browsing strategies in the world wid@weeiputer Networks

and ISDN Systen7, 1065-1073, 1995.

E. Cohen and H. Kaplan, Caching documents with variable sizes and fetching costs: an LP based
approachProceedings of the ACKEIAM Symposium on Discrete Algorithrpp. S879-S880, 1999.

J. D. Fix, R. E. Ladner, and A. LaMarca, Cache performance analysis of traversal and random accesses,
Proceedings of the ACMEIAM Symposium on Discrete Algorithrpp. 613-622, 1999.

B. Huberman, P. Pirolli, J. Pitkow, and R. Lukose, Strong regularities in world wide web siBfiregce

280, 95-97, 1998.

S. Irani, Page replacement with multi-size pages and applications to web caeloogedings of the

ACM Symposium on Theory of Computipg. 701-710, 1997.

B. Jiang, DFS-traversing graphs in a paging environment, LRU or Mi®drmation Processing Letters

40, 193-196, 1991.

B. Kalyanasundaram and K. Pruhs, Constructing competitive tours from local inforniBitieoretical
Computer Scienc#30, 125-138, 1994.

A. Karlin, S. Phillips, and P. Raghavan, Markov pagifgpceedings of the IEEE Symposium on
Foundations of Computer Scienggp. 208-217, 1992.

D. Sleator and R. Tarjan, Amortized efficiency of list update and paging @gamunications of ACM
28202-208, 1985.

L. Tauscher and S. Greenberg, How people revisit web pages: empirical findings and implications for
the design of history systemisiternational Journal of Human-Computer Studi€g 97-137, 1997.

N. Young, Thek-server dual and loose competitivenesigorithmicall, 525-541, 1994.

N. Young, On-line file cachingProceedings of the ACMBIAM Symposium on Discrete Algorithms

pp. 82-86, 1998.

